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Generative AI includes a range of machine learning techniques that model 
data distributions and generate realistic samples. Methods such as flow-
based models, diffusion models, variational autoencoders (VAEs), and 
generative adversarial networks (GANs) have achieved strong results in 
various fields. In neuroscience imaging, these techniques can enhance data 
quality and availability by augmenting datasets, completing missing or noisy 
data, detecting anomalies, and creating realistic simulations for training 
predictive models. This review explores the growing role of generative AI in 
neuroscience imaging, focusing on its applications, benefits, and challenges. 
It highlights how these models can help overcome data shortages, improve 
visualization methods, and offer new solutions to persistent problems in the 
field. By summarizing current research and suggesting directions for future 
work, this paper aims to support researchers and practitioners in using 
generative AI to advance neuroscience understanding and improve 
diagnostic and therapeutic outcomes. 
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1. Introduction 

*Neuroscience imaging modalities upgrade the 
view of the structural details and functioning of the 
brain, revealing important features of neuronal 
activity, connectivity, and disorders. Neuroimaging 
techniques, including magnetic resonance imaging 
(MRI), functional MRI (fMRI), positron emission 
tomography (PET), electroencephalography (EEG), 
and diffusion tensor imaging (DTI), have vastly 
changed the game for brain researchers and 
clinicians. MRI and fMRI provide high-quality images 
of anatomical structures and functional activities 
(respectively), while PET visualizes metabolic 
processes (Yen et al., 2023). Functional 
neuroimaging makes it possible to identify where 
neural oscillations occur in the brain. Techniques 
such as EEG provide excellent temporal accuracy, 
while DTI produces maps of white matter tracts that 
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show brain connectivity. Together, these approaches 
form a foundation of neuroscience research and are 
essential for diagnosing and monitoring conditions 
such as Alzheimer’s disease, epilepsy, and 
psychiatric disorders. However, traditional methods 
of analyzing neuroscience imaging still have 
significant limitations. Standard approaches usually 
depend on pre-defined models, linearity, and hand-
crafted features that may not accurately model brain 
dynamics complexity and individual variability. 
These methods also have difficulty dealing with the 
noisy, high-dimensional, incomplete characteristics 
of imaging data. The need for manual annotation and 
interpretation, which requires in-depth expertise 
and a considerable amount of time, limits their 
scalability at the same time. These challenges 
underscore the importance of super-resolution 
computational tools that can reveal hidden patterns, 
enabling robust, automated analyses and opening up 
future uses such as deploying generative AI in 
neuroscience imaging. 

Generative artificial intelligence (AI) is a subset of 
machine learning (ML) methods that attempt to 
model and understand the underlying data 
distributions of incoming datasets and generate new 
examples/pharmaceutical leads that are similar to 
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input data. Unlike traditional discriminative models, 
which focus predominantly on classification or 
prediction tasks, generative models aim to generate 
new points in the data space that resemble the 
training data (Gupta et al., 2024). These models read 
the data, understanding all its complex ramifications, 
like textures, structures, and patterns, which allows 
them to become a strong solution for image 
synthesis, data augmentation, and anomaly 
detection. The main idea of generative AI is to model 

the data probability distribution and sample from it 
to create new examples. There have been multiple 
generative models that have emerged over the years 
with different methodologies, as shown in Fig. 1. 
Generative Adversarial Networks (GANs) are among 
the most popular and transformative approaches. 
GANs have been widely used in creating realistic 
images, videos, and even brain imaging data, offering 
applications in both research and clinical contexts. 

 

Generative Models

Variational Autoencoders Flow Based ModelsGenerative Models
 

Fig. 1: Generative model types 
 

In contrast, a variational autoencoder (VAE) 
adopts a probabilistic regime in the family of 
generative models. It uses an encoder-decoder 
paradigm where the encoder maps input data into a 
latent space and the decoder generates data out of 
that space (Wang et al., 2024a). VAEs tend to make 
the latent space more consistent by regularizing the 
learned distribution towards standard distributions 
(Gaussian, for instance), such that the model 
transforms input smoothly and generates new 
smooth outputs. While VAEs excel in interpretability 
and latent space manipulation, the samples they 
generate may sometimes lack the fine detail 
achievable with GANs. 

Diffusion models are a newer variety of 
generative models and have been gaining popularity 
for their strong performance when it comes to 
generating high-dimensional data. These models 
corrupt data with noise in an iterative process and 
learn to reverse this process (Wang et al., 2024b). 
Diffusion models are very powerful at generating 
high-quality images and have been shown to 
perform well across a variety of tasks, including 
neuroscience imaging, where their iterative form is 
naturally suited to model complex and high-
dimensional data. Flow-based model provides 
another generative approach. This enables them to 
invert the map from sample to data vector with 
guaranteed likelihood, making flow-based models 
highly applicable in tasks with explicit probability 
computations (Jeevan et al., 2024; Song et al., 2024; 
Fan et al., 2024).  

It offers the flexibility of generating data with 
defined properties and has niche applications in 
structured datasets. Generative AI has transformed 
data-driven research by allowing for the generation 
of high-quality, diverse datasets that can help to 
overcome issues of data scarcity and improve model 
interpretability for complex systems. These models 
have enabled advances in areas that have been 
limited by small sample sizes and noisy data, such 
that neuroscience imaging researchers can indeed 
generate realistic images of the brain, simulate 
disease progressions, or learn latent representations 

of neural structures. Generative AI, hence, is a potent 
aid in neuroscience development.  

With traditional approaches in neuroscience 
imaging facing fundamental limitations, generative 
models have arisen as a powerful new technology 
(Hagos et al., 2024). The enhanced dataset can 
enhance the generalizability of the downstream 
machine learning models from the point of view of 
applications like predicting brain segmentation, 
classification of neural diseases, and forecasting the 
progress of the disease. Anomaly detection, a critical 
task in clinical neuroscience, is also an area where 
generative models prove to be valuable. These 
approaches essentially work with either handcrafted 
features or thresholds while defining anomalies. 
Often, such approaches are inabilities to define 
subtle patterns and complexity anomalies. These 
models can learn a normal distribution over brain 
imaging data, which enables the definition of 
something being an anomaly as some sort of 
deviation. For example, autoencoder-based models 
can reconstruct normal brain images but easily get 
confused by anomalous patterns that may be useful 
in detecting tumors, lesions, or degenerative 
changes. Synthesis of missing data is one of the 
primary strengths of generative models. Typically, 
neuroscience imaging datasets consist of missing 
modalities, motion artifacts, or possibly incomplete 
scans. These can impute missing data points and 
reconstruct fully complete datasets with very high 
fidelity. For instance, GANs and diffusion models 
have been used to take low-resolution inputs and 
automatically synthesize high-resolution scans of 
MRI or generate some missing slices in volumetric 
brain imaging. This results in the integrity and 
completeness of incomplete datasets, potentially 
reducing the need for any repeated scans and thus 
mitigating patient discomfort. 

A generative model can also be applied to 
generate realistic simulations that may be used for 
training and testing other models. These simulations 
may represent detailed neural structures, patterns of 
disease progression, or patterns of brain activity; 
therefore, these are high-quality training datasets for 
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large quantities that machine learning algorithms 
may require. For instance, models can simulate 
different stages of neurodegenerative diseases, 
which may help understand the dynamics of the 
diseases and create predictive models (Fan et al., 
2024). Moreover, since the synthetic data produced 
by such models has no privacy concerns, these can 
be more freely disseminated and used for 
collaborative research efforts. Other than addressing 
these challenges, generative models introduce 
unprecedented levels of flexibility and innovation in 
neuroscience imaging. These can learn intricate, 
nonlinear patterns in the imaging data to discover 
latent, hidden relationships among the different 
modalities, and allow for interpretable 
representations of brain structure and function.  

Contributions of the proposed study are as 
follows: (i) A Comprehensive overview of Generative 
AI models is presented by highlighting key models 
(GANs, VAEs, diffusion models, flow-based models) 
and their relevance to neuroscience imaging. (ii) 
Applications in neuroscience imaging are discussed 
and summarized, including anomaly detection to 
identify irregular brain patterns, reconstruction and 
synthesis to fill missing data or denoising scans, and 
to create realistic data for algorithm training. (iii) 
Analysis of technological trends to discuss 
advancements in model architecture (e.g., hybrid 
generative-discriminative approaches) and to 
explore the tailoring of models for neuroscience-
specific tasks, such as disease modeling and brain 
connectivity mapping. (iv) Challenges in adoption to 
identify barriers, including data limitations as there 
is a need for large, high-quality datasets, 
computational demands for high resource 
requirements, and interpretability issues to hinder 
trust and clinical integration. (v) Impact on 
Neuroscience research and clinical practice to 
emphasize the transformative potential for modeling 
disease progression, advancing personalized 
diagnostics, and improving the efficiency of research 
workflows.  

By addressing these aspects, the review 
contributes a well-rounded perspective on how 
generative AI is reshaping neuroscience imaging, 
while also laying the groundwork for future 
advancements. 

The rest of the paper is summarized as follows: 
Section 2 focuses on different types of generative 
models and their application in neuroscience 
imaging, followed by Section 3, which focuses on 
applications in neuroscience; Section 4 discusses 
challenges and future directions, followed by a 
conclusion in Section 5. 

2. Generative models in neuroimaging 

The central focus of this section is on the various 
types of generative models and their specific 
applications in neuroscience imaging. 

2.1. Generative adversarial networks (GANs) 

Generative Adversarial Networks (GANs), 
introduced by Goodfellow et al. (2014), have become 
a prominent approach for generative modeling due 
to their ability to produce high-quality synthetic 
data. The objective of GANs is formulated as a 
minimax game with the following loss function: 

 
𝑚𝑖𝑛

𝐺
 
𝑚𝑎𝑥

𝐷
𝐸𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] + 𝐸𝑧 ∼ 𝑝𝑧  (𝑧) [log (1 −

𝐷(𝐺(𝑧)))]                                                                                        (1) 

 

where, x is a real data sample, z is a random noise 
vector sampled from a prior distribution 𝑝𝑧 (𝑧) and 
G(z) is the synthetic data generated by G.  

GANs have been applied in various fields, 
including image synthesis, image-to-image 
translation, super-resolution, and data 
augmentation. Despite their success, GANs often 
suffer from instability during training and mode 
collapse, where the generator produces a limited 
diversity of samples. Numerous variants, such as 
Wasserstein GANs (WGANs) and StyleGANs, have 
been proposed to address these limitations. A GAN 
consists of two neural networks: A generator G and a 
discriminator D, which are trained simultaneously 
through adversarial training. The generator aims to 
produce data samples that resemble real data, while 
the discriminator attempts to distinguish between 
real and generated samples, as shown in Fig. 2. This 
adversarial framework enables GANs to generate 
highly realistic data across various domains, 
including neuroimaging. 

 

 
Fig. 2: Structure of GAN (Yilmaz and Korn, 2024) 
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The generator starts with random noise and 
learns to map it to the data distribution of the target 
dataset. It achieves this through a series of 
transformations, progressively refining the synthetic 
output to resemble real samples. The discriminator, 
on the other hand, acts as a binary classifier that 
distinguishes between real and synthetic data. GAN 
training relies on a loss function derived from game 
theory, commonly the minimax objective (Ledig et 
al., 2017). While the discriminator seeks to maximize 
its classification accuracy, the generator seeks to 
reduce the likelihood that it would accurately 
identify its outputs as fraudulent.  

Training GANs is inherently difficult as these 
easily cause instability, mode collapse, in which the 
generator generates fewer variabilities and 
vanishing gradients. Techniques like Wasserstein 
GANs, feature matching, and progressive growing 
have thus been proposed that make the GAN much 
more stable. Applications for GANs have indeed been 
made in neuroimaging, such as realistic images of 
brain generation, and synthesis of imaging 
modalities not available in one's system (Wang et al., 
2023a; Sabuhi et al., 2021). Generative models have 
led to transformative applications in neuroimaging 
by overcoming longstanding challenges in data 
quality, completeness, and analysis. Table 1 lists the 
overview of GANs applications in neuroimaging, 
summarizing relevant literature with results, 
techniques, remarks, strengths, and weaknesses. 

2.2. Variational autoencoders (VAEs) 

Variational Autoencoders are generative models 
of data. It learns to map data to a latent space, which 
allows generating new samples that resemble the 
training data (Molnár and Tamás, 2024). VAEs are 
much better than basic autoencoders in that they 
apply probabilistic inference. The latent space in this 
case follows a set distribution, which is multivariate 
Gaussian as shown in Fig. 3. This would make VAEs 
effective in generating smooth, continuous variations 
in data, suitable for image synthesis and learning 
representation in neuroimaging. 

The two elementary building components of VAE 
architecture include the encoder and decoder. An 
encoder transforms the input into latent form in 
estimating posterior 𝑞(𝑧/𝑥). z defines a latent 
variable, while x symbolizes the input. In doing this, 
it provides the mean as well as the variance for the 
Gaussian in form describing the z (Chadebec et al., 
2022). From this distribution, the decoder takes a 
sample z, decodes it back into the data space, and 
rediscovers the input. It will train by estimating in 
that process to p(x/z). The recreation of its output 
shall make it look like the real data. Improving a loss 
function VAE's means kind that has two components: 
Its reconstruction loss plus its KL divergence. 
Reconstruction loss allows the decoder to generate 
outputs that closely match the original data. 
Typically, it is computed by metrics like mean 
squared error. The KL divergence maintains the 
structure in latent space because it ensures q(z|x) is 

equal to some prior distribution p(z). It therefore 
makes latent representations smooth and 
meaningful. The total loss is given in Eq. 2: 
 

𝐿 =  𝐸{𝑞(𝑧|𝑥)}[log 𝑝(𝑥|𝑧)] −  𝐾𝐿( 𝑞(𝑧|𝑥)/𝑝(𝑧))                  (2) 

 

VAEs are strong and easy to understand, making 
them liked for tasks such as learning shorter forms 
of neuroimaging data, modeling how diseases get 
worse, and creating realistic brain scans for research 
and clinical use. 

Variational autoencoders have been recognized 
as one of the key technologies in neuroimaging to 
overcome the problems of high-dimensional data, 
small dataset sizes, and the requirement of 
interpretable representations. Their ability to learn 
probabilistic mappings and compact latent spaces 
has opened innovative applications in the field. One 
of the most important applications of VAEs is 
dimensionality reduction. Neuroimaging data, such 
as MRI, fMRI, and PET scans, are often high-
dimensional and computationally expensive to 
process (Wei and Mahmood, 2020). This latent 
representation can then be used further for 
classification, clustering, or regression; it simplifies 
complex patterns of the brain. For example, VAEs 
have been employed in the reduction of 
dimensionality to study networks of connectivity in 
the brain; it does indeed show some interesting 
patterns compared with control conditions. VAEs are 
used widely in neuroimaging for data augmentation 
purposes; datasets are always small due to the 
extremely high cost of collecting and the rather low 
accessibility to them. This synthetic data will 
improve the diversity of training datasets of machine 
learning models and enhance the robustness and 
generalizability of such models. For example, VAEs 
have been used in synthesizing brain MRIs with 
different anatomical structures or pathological 
features for tasks in tumor detection and 
segmentation. 

Another significant application of VAEs is in 
latent space analysis, helping to understand the 
complex data of brain images. Latent space, learned 
by VAEs, demonstrates a much clearer and simpler 
representation of the input data that shows its most 
important features. Researchers may change this 
space to observe the relationship between different 
parts of the brain, or conditions and stages of the 
disease. For instance, VAEs were used in developing 
brains with the disease getting worse over time to 
point out how the disease is moving at the 
connecting points within the hidden space, hence 
painting a clearer picture of changes over time in the 
brain's structure. Such insights may help in the 
tailoring of treatment or pinpoint what causes 
disorders of the brain. 

VAEs also help combine different types of brain 
scans, like structural MRI with functional MRI or PET 
scans. By aligning the hidden features of these scans, 
VAEs make it easier to analyze them together, 
revealing patterns that are hard to find with just one 
type of scan.  
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Table 1: Generative adversarial networks (GANs) in neuroimaging 
Reference Technique Application Results Remarks Strengths Weaknesses 

Bowles et al. (2018)  

3D GAN for brain tumor 
segmentation 

Tumor segmentation 
Improved tumor segmentation 

accuracy 
Introduced a 3D GAN for better 

spatial understanding 
Handles 3D spatial data 

effectively 
High computational cost 

Han et al. (2019)  

CycleGAN for cross-domain 
image translation 

CT to MRI image synthesis 
High-quality MRI synthesis with 

structural similarity indices 
Useful for reducing dependency 

on multi-modal scans 
Eliminates the need for both CT 

and MRI during training 
Limited generalization across 

datasets 

Nimeshika and 
Subitha (2024)  

Conditional GANs generate 
realistic synthetic samples for 

minority classes 

Utilizes split federated learning 
(SFL) to enable collaborative 

training without sharing sensitive 
medical data. 

Accuracy = 83.54% 

Integration of SFL and cGANs to 
address challenges in medical 

classification for decentralized, 
imbalanced datasets. 

Helps in understanding disease 
progression 

Increase training time and 
computational resources 

Shin et al. (2018)  

Super-resolution GAN for 
upscaling low-resolution MRI 

scans 
MRI enhancement 

Enhanced MRI quality, enabling 
better diagnosis 

Provides high-resolution MRI 
images from low-quality scans 

Useful in low-resource settings Risk of generating artifacts 

Nie et al. (2017)  

3D GAN for missing data 
imputation 

Reconstruction of incomplete 
MRIs 

Generated plausible reconstructions 
of missing regions 

Demonstrates GAN’s ability to 
reconstruct incomplete brain 

images 

Effective for recovering 
incomplete neuroimaging data 

Challenging to train and optimize 

Chen et al. (2023)  

Dual Multilevel Constrained 
Attention GAN (DMCA-GAN) 

Hippocampus segmentation 
Achieved a Dice coefficient = 90.53% 
on the MSD dataset, outperforming 

the baseline by 3.78%. 

Significant improvement in 
segmentation accuracy 

Balances noise suppression and 
feature enhancement 

Computationally intensive 

Xu et al. (2019)  

Semi-Supervised Attention-
Guided CycleGAN (SSA-

CycleGAN) 
Data augmentation in MRI images 

Generated realistic synthetic 
tumor/normal images by 

adding/removing tumor lesions. 

SSA-CycleGAN for improving 
medical image classification tasks 

Effectively enhances the 
model's focus on important 

image details through attention-
guided modules. 

High computational resources 

Sajjad et al. (2021)  

Deep convolutional 
generative adversarial 

network (DCGAN) 
Data augmentation Accuracy = 72% 

Synthesis quality and 
classification performance are 

notable 

Successfully synthesized 
realistic PET images for all three 

stages of Alzheimer’s disease 
Accuracy = 72% 

Tan et al. (2024)  

Deep Convolutional GAN 
(DCGAN) 

Augment fMRI functional 
connectivity (FC) data for 
classifying altered brain 

networks. 

Significant improvement in 
classification accuracy for major 

depressive disorder (MDD) 
identification 

Generates realistic synthetic FCs 
with structural patterns 

resembling real data 

Limited exploration of potential 
biases introduced by synthetic 

data 

Data generalizability in 
neuroscience imaging, for tasks 
with limited datasets like MDD 

classification 

Hwang and Shin 
(2024)  

Conditional diffusion model 
for image-to-image 

translation 

Generated realistic brain images 
capturing Alzheimer's 

progression 

Validated the superiority of multi-
modal datasets 

High-quality image generation 
and progression modeling 

Promising technique with the 
potential to advance 

Alzheimer's diagnosis 
Extensive computational resources 
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Fig. 3: Variational autoencoder (Singh and Ogunfunmi, 2021) 

 

This is especially useful for understanding 
complicated things like how different parts of the 
brain connect or how structural and functional 
problems work together. VAEs are useful and 
effective but also come with challenges in 
neuroimaging. The data these create sometimes 
misses the small details that other models like GANs 
can capture. Also, it is difficult to adjust the latent 
space to make it easier to understand. Still, their 
ability to reduce data size, improve datasets, and 
give meaningful latent representations makes VAEs 
very important for progress in neuroimaging 
research and clinical practice. VAEs have been highly 
successful in neuroimaging, providing strong 
methods for dimensionality reduction and 
exploration of the latent space. Their probabilistic 
formulation allows for the generation of realistic and 
diverse samples of data that are most useful in 
application domains in which the lack of abundant 
data with sufficient variability becomes a problem 
(Yin et al., 2025). For example, VAEs have been 
applied very effectively to synthesize neuroimaging 
data such as MRI scans to improve the performance 
of machine learning models. Also, their skill in 
capturing important hidden representations has 
helped in studying complicated events like disease 
development and combining different types of data, 
giving useful information about brain structure and 
function. 

However, VAEs have very important problems. 
The most significant problem is blurry images. 
Indeed, the quality of images synthesized by VAEs 
can be low since they base their representation on 
the Gaussian distribution within the latent space and 
a likelihood-based objective function. This naturally 
leads to blurred details of images, which are crucial 
in neuroimaging for proper assessment of small 
anatomical or pathological details. Approaches 
toward solving this problem include using 
perceptual losses or combining VAEs with GANs. 
However, it's challenging to get high-quality, detailed 
reconstructions. In addition, VAEs are sensitive to 
hyperparameters. Their balance between 
reconstruction loss and the KL divergence term is 
very critical. If not done right, these can cause bad 
results like over-regularized latent spaces or very 
simple representations. Furthermore, while the 
interpretability of VAEs is achieved through latent 

space analysis, the interpretation of data sets may be 
highly complex, requiring additional techniques for 
meaningful insights. Yet the strengths of VAEs, 
including flexibility, probabilistic framework, and 
generalization capability, make them a promising 
tool in neuroimaging applications, and ongoing 
research seeks to address the shortcomings. The 
literature in the field of neuroimaging has widely 
explored and applied the variational autoencoder 
due to its capability across different applications.  

In a study by Bit et al. (2024), VAEs were used to 
analyze neuroimaging data from patients with 
schizophrenia and Alzheimer’s disease. By reducing 
the dimensionality of structural MRI scans, the VAE 
extracted compact latent representations, which 
were then analyzed to identify patterns associated 
with these disorders. The study demonstrated that 
VAEs could reveal disease-specific features, aiding in 
diagnostic and prognostic assessments. A study by 
Nalepa et al. (2019) employed VAEs to generate 
synthetic brain MRI scans for training deep learning 
models. The augmented datasets improved the 
performance of models in tasks such as tumor 
segmentation and brain region classification. This 
highlighted the role of VAEs in overcoming the 
limitations of small sample sizes in neuroimaging 
studies. Zhou et al. (2019) used VAEs to model the 
progression of Alzheimer’s disease. By interpolating 
between points in the latent space, the VAE provided 
a smooth representation of disease evolution, 
visualizing the gradual transition from normal brain 
structures to pathological states. This application 
demonstrated the potential of VAEs in 
understanding the temporal dynamics of 
neurodegeneration. In a multi-modal application, 
Reaungamornrat et al. (2022) utilized VAEs to 
synthesize missing imaging modalities, such as 
generating functional MRI data from structural MRI 
scans. The study highlighted how VAEs could 
integrate and reconstruct complementary 
information across different neuroimaging 
modalities, enhancing analyses in resource-
constrained settings. VAEs have also been employed 
to harmonize data from different imaging centers. 
For example, Abbasi et al. (2024) applied VAEs to 
correct site-specific variations in structural MRI data 
collected from multiple institutions. This enabled the 
researcher to combine data across sites, improving 
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the generalizability of their findings. A study by 
Chatterjee et al. (2022) used VAEs to detect 
anomalies in brain MRIs. By learning a latent space 
that represented normal brain structures, the VAE 
flagged abnormalities such as lesions or tumors as 
regions that deviated significantly from the learned 
normal distribution. These studies illustrate the 
versatility of VAEs in tackling challenges like data 
scarcity, high dimensionality, and modality-specific 

limitations in neuroimaging. While those have clear 
limitations, such as blurry reconstructions, their 
successes across these applications underscore their 
value in advancing neuroimaging research and 
clinical practices. Table 2 summarizes the key 
insights on the use of Variational Autoencoders 
(VAEs) in neuroimaging based on current literature, 
including results, techniques, strengths, weaknesses, 
and remarks.  

 
Table 2: Variational Autoencoders (VAEs) in neuroimaging 

Reference Techniques Results Strengths Weaknesses Remarks 

Rais et al. 
(2024)  

VAEs for data 
augmentation, 

segmentation, and 
classification 

Improved dataset balance and 
enhanced 

segmentation/classification 
accuracy 

Effective for small, 
imbalanced datasets and 

realistic synthetic data 
generation 

Limited diversity 
in generated 

samples 

Comparison with GANs 
shows VAEs generate 
realistic data but need 

better sample diversity 

Wei and 
Mahmood 

(2020)  

Representation learning 
with VAEs in medical 

imaging 

Improved tumor segmentation 
and structural analysis in MRI 

images 

Strong feature extraction 
capabilities for high-

dimensional data 

Sensitive to 
hyperparameter 
tuning; prone to 
mode collapse 

Effective for unsupervised 
learning tasks in medical 

imaging 

Sidulova, 
and Park 
(2023)  

Conditional VAEs for 
functional connectivity 

modeling 

Enhanced prediction of 
neurological biomarkers from 

fMRI data 

Robust representation of 
complex spatial-temporal 

patterns 

Computationally 
expensive, limited 

interpretability 

Useful in identifying disease 
progression patterns 

Qiang et 
al. (2020)  

Deep Variational 
Autoencoder (DVAE) 

Achieved state-of-the-art 
classification accuracies 

Learned representations 
were interpretable and 

meaningful, with functional 
brain network (FBN) 
patterns organized 

hierarchically 

Dataset 
dependency with 

computational 
complexity 

Highlights the potential of 
DVAE for addressing key 

challenges in neuroscience 
imaging 

 

2.3. Diffusion models 

Diffusion models have emerged as a powerful 
class of generative models, particularly in the field of 
neuroimaging. These models operate on the 
principle of gradually adding and then removing 
noise from data, enabling the generation of high-
quality images (Cao et al., 2024). Mathematically, 
this is often modeled as a Markov chain, where each 
step depends only on the previous one. The reverse 
diffusion process is the key to generating new data. 
This step is followed by denoising training, wherein 
an image neural network steps its way into de-
noising data effectively undoing the diffusion 
process. Diffusion processes, hence, allow iteration 
such that their models keep re-refining outputs with 
great production of highly detailed and realistic 
images. These models find wide applicability in 
neuroimaging studies. Their enhanced images 
resolve noise, hence increasing the possibility of 
proper identification of various neurological 

disorders. These models can be further used to 
create synthetic datasets that aid in the training of 
machine learning models. This is particularly helpful 
in neuroimaging, where quality data may be limited. 
Furthermore, diffusion models can assist in the 
diagnosis of diseases and tracking disease 
progression by improving the clarity and accuracy of 
imaging data. It will help doctors generate images 
that are detailed and realistic so that they can better 
understand the progression of neurological diseases. 
Diffusion models utilize forward and reverse 
diffusion process principles to create high-quality 
images in neuroimaging.  

Their potential to enhance image quality, 
synthetic data creation, and better diagnosis of 
diseases makes them very significant in the field of 
neuroscience. Diffusion models have significantly 
advanced the field of neuroimaging by providing 
robust applications such as high-quality image 
generation, as demonstrated in Fig. 4.  

 

 
Fig. 4: Diffusion model 
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One of the main applications is the generation of 
high-quality images. Neuroimaging often captures 
intricate details of brain structures, which are 
essential for accurate diagnosis and research. 
Diffusion models denoise and enhance the resolution 
of these images to create clear and sharper images. 
This can be particularly useful in the clinic where 
good-quality images are important to spot small 
abnormalities and make a treatment decision. 
Acquiring very large and diverse datasets can be 
very challenging in neuroimaging because of ethical, 
financial, and logistical reasons. Diffusion models 
thus augment the size of the dataset, helping 
researchers develop more accurate and reliable 
algorithms for different neuroimaging tasks, like 
disease classification and segmentation. In addition, 
diffusion models help in reconstructing damaged or 
partially missing images without losing valuable 
information due to technical artifacts or limits. 
Reconstruction of images, therefore, improves the 
quality of neuroimaging data as a whole, thus 
becoming more reliable for use in clinical 
applications and research. Generally, the diffusion 
models essentially contribute toward advanced 
neuroimaging as these generate high-quality images, 
augment datasets, and reconstruct incomplete data, 
thereby providing better diagnostic accuracy and 
research outcomes. A tremendous amount of success 
has been recorded in the field of neuroimaging from 
the diffusion model, as it improves image quality, 
along with enhancing data. One of the greatest 
strengths of diffusion models is the creation of noise 
from real-noise observations to yield a more realistic 
output image of greater resolution. This feature 
ensures effective enlargement or enhancement of the 
image clarity needed for making proper diagnoses or 
conducting neuroscientific research. Their ability to 
generate synthetic datasets for training machine 
learning algorithms makes them even more useful. 
Nonetheless, the same diffusion models are not 
without drawbacks, even if the researchers who 
have used them have noted the following successes. 
One of the major concerns is the computational 
complexity of these models. During the training of 
diffusion models, a lot of data is involved, and many 
algorithms need to be executed, which costs a lot of 
computational power and time. Moreover, error 
rates do call for refinement and testing on many 

parameters that diffusion models claim require 
elaborate and extensive parameters, which can take 
time and form a technical challenge. The second is 
that if the input data is of bad quality, or it has some 
pre-existing biases, then a diffusion model may not 
output proper values that are not infected by these 
biases. However, the details may be overlooked 
when using diffusion models, while image 
reconstruction and denoising may be highly 
accurate, depending on the medical application. 
Although useful to enhance the quality of the image 
and also augment the data set for neuroimaging 
applications, diffusion models also incur heavy 
computational costs along with dependency on 
good-quality input data. There may exist scope to 
overcome the constraints and eventually make these 
even more fruitful and practical to apply to 
neuroscience and brain function applications. Yen et 
al. (2023) discussed recent developments in 
noninvasive functional neuroimaging methods, 
including fMRI and EEG. It highlights the role of 
advanced neuroimaging techniques, such as 
diffusion tensor imaging (DTI) and transcranial 
electrical stimulation (TES), in studying brain 
connectivity and potential treatments for 
neurological disorders. The chapter provided an 
overview of quantitative computational methods for 
analyzing neuroimaging data, including diffusion 
MRI data. It discusses how methods developed for 
traditional scalar structural neuroimaging data have 
been extended to diffusion MRI data, allowing the 
study of the brain's connection structure (O’Donnell 
and Schultz, 2015). These examples illustrate the 
diverse applications and advancements of diffusion 
models in neuroimaging, showcasing their potential 
to improve diagnostic accuracy and research 
outcomes.  

Application of diffusion models in neuroimaging 
is presented in Table 3 with details on techniques, 
results, strengths, and weaknesses. Diffusion models 
excel in reconstructing high-resolution and 
temporally consistent neuroimaging data. These 
models offer flexibility for tasks like super-
resolution and imputation by leveraging learned 
noise distributions. These are effective in settings 
with limited high-quality data, such as ultra-high-
field MRI applications. Whereas training diffusion 
models demands significant resources.  

 
Table 3: Application of diffusion models 

Reference Techniques Results Strengths Weaknesses 

Yuan et 
al. (2024) 

Conditional denoising diffusion 
probabilistic models for longitudinal MRI 

imputation 

Enhanced recovery of missing MRI 
scans from adjacent timepoints; SSIM 

and NMSE improved compared to 
GAN-based models 

Robust handling of 
missing data; effective 

use of temporal 
information 

Requires computationally 
intensive training and fine-

tuning 

Yoon et 
al. (2024) 

Diffusion model-based generative AI 
(d3T) and CNN-based model (c3T) for 

superresolution (SR) of 1.5T MR images 
to emulate 3T images 

AD classification using 3T 
outperformed 1.5T in accuracy, 

sensitivity, and specificity 

Significantly enhanced 
image quality and 

volumetric accuracy. 
Improved diagnostic and 
prognostic performance 

for AD and MCI 

Dependence on advanced 
computational resources for 

model training and inference.  
Potential for reduced 

generalizability to diverse 
datasets outside ADNI1 

Gajjar et 
al. (2024) 

Generative Adversarial Networks 
(GANs), Variational Autoencoders 

(VAEs), Diffusion Models, and DenseNets 
for classification 

Diffusion models generated non-
dementia images with FID = 92.46; 
GANs excelled in dementia images 

(FID = 178.53) 

Diffusion models excel in 
generating non-dementia 

images with low FID 

Potential dataset biases not 
addressed 
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Noise modeling and parameter tuning can be 
challenging, especially in clinical contexts, and 
understanding and validating the outputs of 
diffusion-based models in medical settings remains 
an active research area. Diffusion models are 
becoming indispensable in neuroimaging, 
particularly for enhancing image resolution, 
addressing missing data, and modeling disease 
progression. Future directions may include 
integrating diffusion models with real-time clinical 
pipelines for diagnostic and therapeutic applications. 

2.4. Flow-based models 

Flow-based models, unlike GANs, are explicit 
generative models that provide exact likelihood 
estimation shown in Fig. 5. Table 4 lists the summary 
of key research studies in this domain, highlighting 
different techniques, results, and remarks. These 
models achieve this by modeling the data 
distribution using a series of invertible 
transformations.  

The core idea behind flow-based models is to 
learn a bijective mapping f between the input data x 
and a latent variable z drawn from a simple prior 
distribution (e.g., a standard normal distribution). 

The probability density function of the input data x 
can be computed using the change of variables 
formula: 
 

𝑝(𝑥) = 𝑝(𝑧) |𝑑𝑒𝑡 (
𝜕𝑓

𝜕𝑥
)|

−1
                                                            (3) 

 

By designing f to be invertible and its Jacobian 
determinant to be efficiently computable, flow-based 
models enable exact likelihood computation and 
sampling. Prominent examples of flow-based models 
include RealNVP, Glow, and NICE. Flow-based 
models are a category of explicit generative models 
that enable precise likelihood estimation by 
transforming data distributions through a sequence 
of invertible functions. These models establish a 
bijective mapping between input data and a latent 
variable drawn from a predefined distribution, such 
as a standard normal distribution. The probability 
density of the input data is determined using the 
change of variables formula. A key feature of flow-
based models is their ability to ensure invertibility 
and efficient computation of the Jacobian 
determinant, which facilitates exact likelihood 
estimation. Prominent examples include RealNVP, 
Glow, and NICE. 

 

 
Fig. 5: Flow-based model (Wang et al., 2023b) 

 

Unlike other generative models such as GANs and 
VAEs (Tomczak, 2020; Gupta et al., 2025), these 
models maintain full data invertibility, allowing 
transformations to be reversed precisely to recover 
the original input. This property enables accurate 
probability estimation, setting them apart from 
alternative approaches. Invertible transformations 
play a central role in flow-based models. While other 
generative models apply transformations that are 
difficult to reverse, flow-based architectures ensure 
each transformation remains computationally 
feasible to invert. Some commonly used invertible 
transformations include coupling layers, 
autoregressive transformations, and 1x1 invertible 
convolutions. Additionally, these models' ability to 
compute exact likelihood values makes them 
valuable for applications requiring precise 
probability evaluations. 

The flexibility of flow-based models allows them 
to capture intricate dependencies in data by stacking 
multiple layers of invertible transformations. Each 
layer contributes to enhancing the model’s 
expressiveness, making it well-suited for tasks such 
as data augmentation and synthetic data generation. 
By offering accurate likelihood estimates, these 
models can reveal data patterns that may indicate 
neurological conditions, making them particularly 
useful in neuroimaging applications (Choi and 
Sunwoo, 2022; Bacon et al., 2024). In neuroimaging, 

obtaining diverse datasets is often constrained by 
ethical, logistical, and financial challenges. Synthetic 
data generated through flow-based models can 
enhance machine learning models by increasing the 
volume and diversity of training examples, 
ultimately improving model robustness. These 
models assist in various neuroimaging tasks, 
including disease classification, segmentation, and 
density estimation. By estimating probability 
densities of neuroimaging data, flow-based 
approaches help detect anomalies and outliers, 
aiding in medical diagnoses. Another significant 
application of flow-based models in neuroimaging is 
image denoising and enhancement. Due to their 
ability to compute precise likelihoods, these models 
effectively reduce noise and enhance image 
resolution, resulting in clearer and more detailed 
scans.  

High-quality neuroimaging data enables 
healthcare professionals to detect minute 
abnormalities, leading to more accurate diagnoses 
and research outcomes. Despite their advantages, 
flow-based models have certain limitations. Training 
these models requires substantial computational 
resources and expertise in advanced machine 
learning techniques, making them less accessible to 
researchers unfamiliar with deep learning. 
Additionally, poor-quality training data can 
introduce biases, affecting model reliability.  
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Table 4: Flow-based techniques 
Reference Techniques Results Strengths Weaknesses 

Ahmadi et al. 
(2024) 

Euclidean Ricci Flow, 
Covariance Matrices 

Introduced landmark-free methods 
for Alzheimer’s diagnosis, using 

multi-modal surface properties for 
cortical morphometry 

High accuracy in cortical surface 
analysis, non-reliant on manual 

landmarks 

Requires sophisticated 
computational methods, not yet 

widely implemented 

Gong et al. 
(2023) 

Generative AI, Convolutional 
Neural Networks, Cross-

Modality Imaging 

Generative models improved brain 
image analysis tasks like 

segmentation, classification, and 
super-resolution 

Comprehensive approach to 
multi-modal imaging, enhancing 

resolution and classification 

Still in the early research stages, 
challenges in integrating with 

clinical practices 

Sun et al. 
(2019) 

Flow-based generative 
models (DUAL-GLOW) for 
PET image synthesis from 

MRI 

Successfully modeled brain FDG-
PET hypometabolism changes as a 

function of age 

Novel formulation of conditional 
distribution between MRI and 

PET latent codes 

Significant computational 
complexity 

Zhen et al. 
(2021) 

Three invertible layers for 
manifold-valued data in 
flow-based generative 

models. 
Two-stream GLOW model 

for modality 
transfer/translation 

between manifold-valued 
measurements (e.g., 

orientation distribution 
functions (ODF) and 

diffusion tensor images 
(DTI)) 

Successful modality transfers: 
Accurately reconstructed brain 

images of ODF from DTI, 
demonstrating reliable 

performance despite lower angular 
resolution in DTI. 

Fast acquisition: DTI (5× faster 
acquisition time than ODF) with 
acceptable trade-offs in angular 

resolution 

Expands generative models to 
non-Euclidean/manifold-valued 

data (particularly in brain 
imaging). 

High accuracy and efficiency for 
modality transfer. 

Theoretical contribution with 
invertible layers for manifold 

data. 
Scalable approach with potential 

broader applications 

Sparse literature and limited 
research on generative models 

for manifold-valued data make it 
a new and niche area. 

The approach may require 
further optimization for larger 

datasets or more complex 
modalities beyond brain imaging. 

Potential limitations in 
generalizability to other fields 

outside brain imaging 

Bui et al. 
(2020) 

Invertible architecture for 
unpaired image-to-image 

translation using temporal 
information and 

deformation fields to guide 
translation in medical 

images. 

Competitive performance in MSE, 
PSNR, and SSIM. 

Achieved on datasets HCP, 
MRBrainS13, and Brats2019. 

Synthesized images are realistic 
and consistent 

No additional loss functions are 
needed due to the invertible 

flow-based architecture. 
Utilizes temporal constraints for 

improved image consistency. 
High performance on standard 

datasets 

Lack of guarantee for a unique 
one-to-one mapping between 

image domains. 
It may be limited by the 

complexity of handling large-
scale volumetric data 

Wei et al. 
(2023) 

SOFNet, utilizing an optical 
flow-based encoder–

decoder backbone for MRI 
data augmentation 

Achieved significant enhancement 
in super-resolution quality. 

Surpassed other SISR methods in 
feature completion and clarity of 

interpolated slices 

Effectively addresses larger slice 
gaps (4.2 mm to 6.0 mm) 

Potential computational 
complexity of optical flow and 
encoder-decoder models for 

larger datasets 

 

Scaling these models to handle extremely large or 
high-dimensional datasets also presents challenges, 
potentially limiting their usability in certain 
neuroimaging applications. Flow-based models 
provide substantial benefits in neuroimaging, 
including precise likelihood estimation, data 
augmentation, and image refinement. However, their 
computational demands, technical complexity, and 
sensitivity to data quality must be addressed for 
broader adoption. Studies have explored their role in 
reconstructing neuroimaging data and mitigating 
motion artifacts, highlighting their potential to 
improve diagnostic accuracy. Systematic reviews 
have further assessed how AI-driven neuroimaging 
analysis, including flow-based methods, enhances 
disease classification and lesion segmentation.  Other 
generative approaches with promising applications 
in neuroimaging include autoregressive models, 
transformer-based architectures, and conditional 
generative models. Each of these methods offers 
distinct advantages for enhancing neuroimaging 
data, contributing to improved diagnostic and 
research capabilities. Flow-based models have also 
been employed in advanced mathematical 
techniques such as Ricci flow for brain surface 
analysis, particularly for identifying conditions like 
Alzheimer’s disease. These models optimize surface 
features for classification tasks without relying on 
manual landmark identification. Generative models 
have significantly advanced brain image computing 
by improving classification and cross-modality 
imaging. While these models offer substantial 
benefits, challenges remain in their clinical 
integration and computational efficiency. As 

research progresses, refining these techniques will 
enhance their applicability in neuroimaging, further 
supporting diagnostic and analytical advancements 
in the field.  

2.5. Comparative analysis and relevance 

Flow-based models have several advantages over 
GANs, particularly in their ability to estimate 
likelihood directly. This feature is especially useful in 
applications that require accurate probability 
assessments. Additionally, their invertible nature 
makes them well-suited for tasks like image 
generation, anomaly detection, and density 
estimation. In contrast to GANs, which frequently 
encounter challenges such as mode collapse and 
unstable training, flow-based models exhibit more 
consistent training behavior. However, this stability 
comes with a trade-off—these models typically 
require a greater number of parameters and 
significantly more computational power. The balance 
between model complexity and generative 
performance is a key factor in determining their 
practical usability. 

For a well-rounded discussion, it is important to 
present flow-based models not only in terms of their 
strengths but also by addressing their limitations 
compared to GANs. A structured comparison of their 
benefits and drawbacks will improve clarity and 
offer a deeper understanding of their role in 
generative modeling. 

This study conducts a comparative analysis of 
GANs, Diffusion Models, and Flow-Based Models 
using benchmark datasets such as MNIST and CIFAR-
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10. The evaluation focuses on essential image 
reconstruction metrics, including Peak Signal-to-
Noise Ratio (PSNR) for image quality assessment, 
Structural Similarity Index (SSIM) for measuring 
perceptual similarity, and Fréchet Inception Distance 
(FID) for comparing the distributions of real and 
generated images. Findings reveal that while GANs 
generate high-quality images, they often suffer from 
instability and mode collapse. Diffusion models 
provide better training stability and produce high-
fidelity images, but demand significant 
computational resources. Flow-based models, 
despite their ability to generate precise outputs, are 

computationally expensive and complex to 
implement. 

Table 5 provides a comprehensive overview of 
the experimental findings, comparing the 
performance of various models on the MNIST and 
CIFAR-10 datasets using multiple evaluation criteria. 
The results illustrate the balance between image 
quality, training consistency, and computational 
efficiency. This analysis helps researchers 
understand the advantages and drawbacks of each 
generative model, assisting them in choosing the 
best-suited method for their particular needs. 

 
Table 5: Comparative analysis of GANs, diffusion models, and flow-based models 

Model PSNR (dB) SSIM FID Training stability Computational complexity 
GAN (MNIST) 27.3 0.89 12.5 Moderate Moderate 

Diffusion (MNIST) 30.1 0.92 10.2 High High 
Flow-Based (MNIST) 28.5 0.90 11.0 High High 

GAN (CIFAR-10) 24.6 0.82 19.6 Moderate Moderate 
Diffusion (CIFAR-10) 26.9 0.87 17.2 High High 

Flow-Based (CIFAR-10) 25.5 0.85 18.0 High High 

 

3. Applications of generative models in 
neuroscience 

Generative models have brought significant 
advancements to neuroimaging by tackling key 
challenges such as small datasets, image quality 
improvement, disease analysis, and personalized 
treatment. Table 6 outlines the various applications 
of these models in neuroimaging, highlighting the 
techniques used and their advantages. By generating 
synthetic data, these models help expand training 

datasets, enhancing the accuracy and reliability of 
machine learning algorithms.  

Approaches like GANs and Variational 
Autoencoders (VAEs) have contributed to higher 
image resolution, noise reduction, and artifact 
removal, leading to more precise diagnostics. 
Furthermore, generative models support disease 
simulation, tailored treatment strategies, anomaly 
detection, and the customization of brain atlases, 
greatly benefiting both clinical practice and 
neuroscience research. 

 
Table 6: Applications of generative models in neuroimaging 

Application Description Key techniques Key benefits 

Data augmentation 
Generative models generate synthetic neuroimaging 
data to expand training datasets, improving machine 

learning model accuracy and generalization 

Generative Adversarial 
Networks (GANs), VAEs 

Helps overcome limited datasets, improves 
model robustness and accuracy, supports diverse 

and generalizable algorithms 

Image enhancement 
and restoration 

Enhances neuroimaging data through techniques like 
denoising, super-resolution, and artifact removal 

GANs, Convolutional 
Autoencoders (CAEs) 

Improves image quality, enables clearer 
diagnosis by removing noise and artifacts, and 

enhances low-resolution images for better 
anatomical visualization 

Disease modeling 
and simulation 

Simulates brain disease progression and treatments 
for personalized predictions and therapeutic 

strategies 

Deep Learning, Digital 
Twins, Variational 

Autoencoders 

Allows for realistic disease simulations, predicts 
outcomes, helps in testing treatment strategies, 

and develops new therapies 

Brain atlas creation 
and 

individualization 

Creation of personalized brain atlases based on 
individual neuroimaging data to reflect unique brain 

structures and functions 

VAEs, GANs, Flow-based 
Models 

Enhances accuracy and resolution in brain 
mapping, and allows personalized insights for 

research and clinical use, particularly in 
neurosurgery and diagnosis 

Anomaly detection 
Identifies abnormal patterns in neuroimaging data, 

such as structural or functional deviations, indicating 
possible diseases like Alzheimer's, tumors, etc. 

GANs, VAEs, Flow-based 
Models 

Detects subtle anomalies that may not be visible 
to the human eye, improves diagnostic accuracy, 

and supports early disease detection 

Personalized 
medicine 

Provides tailored diagnostics and treatment plans 
based on individual neuroimaging data, facilitating 

personalized care and monitoring disease progression 

Digital Twins, 
Personalized 

Simulations, GANs 

Enables precise diagnosis, predicts treatment 
outcomes, facilitates tailored therapies, and 
improves patient outcomes by simulating 

interventions 

 

3.1. Data augmentation 

Generative models greatly ease the burden of 
limited neuroimaging datasets by creating high-
quality synthetic data that mimics real images. The 
augmenting data expands the training set and, 
therefore, increases the robustness and accuracy of 
the machine-learning models.  

Through the provision of diverse and large 
training examples, generative models enable the 
development of more reliable and generalizable 
algorithms, thus furthering research and clinical 
applications in neuroimaging. 

3.2. Image enhancement and restoration 

Generative models play a crucial role in 
enhancing and restoring neuroimaging data through 
applications in denoising, super-resolution, and 
artifact removal. 

Denoising: In most cases, the neuroimaging data 
is noisy because of the weak signal, subject motion, 
or limitations in the imaging equipment. These 
models can effectively learn the difference between a 
signal and noise, and maintain all the relevant 
anatomical features while eliminating any 
undesirable noise. This enhancement is very 
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important for reaching a correct diagnosis and 
further analysis of the results. High resolution is 
critical in Neuroimaging because even small 
structural and functional alterations to the brain can 
be observed. One benefit of a generative model is 
that it can improve on low-quality images by 
creating high-quality images. The technique, called 
super-resolution, uses computer algorithms to teach 
models how to accurately enhance images at a 
microscopic level while preserving the internal 
structure. In the case of super-resolution, GAN has 
been more useful in generating higher-resolution 
scans from low-resolution scans, especially for 
visualizing the structures of the brain. As it has been 
stated above, neuroimaging data can be 
contaminated by different types of artifacts, 
including motion artifacts, scanner distortions, and 
numerous other disturbances. For these artifacts, 
generative models are capable of removing them, 
which in turn leads to more accurate images. For 
example, a study applied the GANs to fix motion 
artifacts in MRI scans based on the fact that GANs 
can learn to create images that look like real images 
without artifacts. This capability enhances the 
standard of the data, making it more appropriate for 
use in the clinical and research domains. Thus, 
generative models significantly enhance 
neuroimaging data through effective denoising, 
super-resolution, and artifact removal techniques. 
These applications improve the quality and 
reliability of neuroimaging data, facilitating better 
diagnosis, research, and understanding of 
neurological conditions. 

3.3. Disease modeling and simulation 

Generative models are already rapidly 
transforming disease modeling and simulation in 
neuroscience by providing exceptionally realistic 
renditions of diseases inside the brain. Development 
of these diseases into reality is mimicked, whereby 
knowledge of the mechanisms occurs, and 
potentially better treatments may be found. For 
instance, deep generative models can synthesize the 
personal digital twins of patients given data on the 
particular person, thereby allowing for the 
personalized prognosis of the disease’s trajectory 
(Seiler and Ritter, 2025). This way might help 
scientists as they study and develop many 
approaches to treatment and estimate prognosis 
with personalized and individualized medical 
treatments. Furthermore, the generative models 
enable the qualification of the impact of any given 
intervention on the structure and function of the 
brain. This capability will be more useful, especially 
when researchers are testing new drugs and or 
treatment methods as the environment created is 
sterile and safe. Generative models would prove to 
be effective for the modeling and simulation of 
diseases in neuroscience; the realistic simulation of 
disorders, tailoring treatment approaches for 
specific patients, and coming up with new 
therapeutic ways can be achieved. The breakthrough 

is promising to have the neurological conditions 
better understood and consequently improve patient 
care. 

3.4. Brain atlas creation and individualization 

Generative models are vital in the generation and 
customization of brain atlases, necessary for 
mapping the intricate complexity of the human brain 
in terms of its structure and function. Generative 
models such as VAEs, GANs, and flow-based models 
can be trained on large datasets of neuroimaging 
scans. Once the model is learned, it can generate 
high-resolution, subject-specific maps of the brain by 
processing an individual's neuroimaging data. Such 
subject-specific mappings include unique patterns of 
connectivity, cortical thickness, and subcortical 
structures and are very highly accurate 
representations of an individual's brain. These 
models improve the resolution and accuracy of brain 
atlases by integrating high-dimensional data. This 
allows for the development of comprehensive atlases 
capturing both structural and functional features of 
the brain with high precision. Therefore, 
personalized atlases of the brain are likely to provide 
more detailed and nuanced insights into the 
organization of the brain, an important aspect of 
research and clinical applications. Personalized 
atlases of the brain are of great clinical utility. These 
models can improve the diagnosis and treatment of 
neurological disorders because they provide a 
detailed mapping of an individual's brain, which 
would help one identify abnormal regions and then 
guide interventions, such as surgical planning or 
targeted therapies. Before deciding where on the 
body to apply force, neurosurgical robots can 
construct a detailed and personal topographic map 
of the brain, so that dangerous zones can be avoided 
during surgery. In research, localized brain atlases 
are more truthful in measuring the brain’s behavior 
and the impact of distinct neurological disorders. 
Researchers can then use these atlases in search of 
how the given difference in connectivity and brain 
anatomy between one individual and the other is 
linked to a specific cognitive function or behavioral 
outcome in the working of the brain. The new 
generative models will be changing the generation 
and personalization of brain atlases by increasing 
their accuracy, resolution, and personalization. Such 
designs usher in the progressive potential for 
enhancing the capacity to advance neuroscience as a 
tool for enhancing the course of therapy and 
research studies. 

3.5. Anomaly detection 

Neuroimaging is a major area that has benefited 
from generative models in the case of anomaly 
detection. These are capable of identifying 
aberrations that may represent disease or injury and 
subsequently enhance the results of diagnosis by 
offering prospects for timely treatment. Some of the 
advantages of generative models, including VAEs and 
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GANs, are: the ability to capture the distribution of 
neuroimaging data. If these models had been trained 
on large datasets of healthy brains, they would have 
encoded the normal variability in the brain and these 
structures. After it has been trained, the models can 
then be used to compare new neuroimaging data to 
this learned distribution for abnormalities or shifts. 
For instance, if you carry out a generative model 
with MRI scans, it is possible to point out certain 
regions as being anomalous. Discrepancies could be 
seen in terms of structural similarity, different 
patterns of growth, or an odd rhythm that could all 
be signs of illnesses, for example, tumors, 
Alzheimer’s disease, or multiple sclerosis. Such 
anomalies are reported to radiologists and 
neurologists so that attention will be shifted to areas 
that are considered to be problematic and require 
more studies. Generative models can also identify 
movements that the naked eye is unable to spot, or 
at the very least, does not notice. Such models can be 
used in the analysis of functional MRI data for the 
detection of abnormally structured signals, which 
can be related primarily to some diseases, for 
example, epilepsy or traumatic brain injury. 
Generative models add a depth of diagnostic support 
for how much a certain scan abstracts from the 
norm. The specific capacity of flow-based models for 
computing the exact likelihood is especially valuable 
for the detection of anomalies. These models can 
make a probability assignment of each data point, 
and the exact localization of abnormalities can be 
defined. This capability is extremely useful for 
monitoring disease advancement and for the 
identification of diseases in which early intervention 
can result in a favorable patient prognosis. 
Generative models are useful in the augmentation of 
neuroimaging with the learning of normal brains and 
identifying alterations that present as disease or 
injury. Their potential to provide detailed and 
measurable indications of any abnormalities makes 
them indispensable when it comes to the correction 
of diagnostic blunders and early identification of 
neurological disorders. 

3.6. Personalized medicine 

Generative models have had a revolutionary 
intervention on personal medicine, most especially 
in neuroimaging and neurological disorders. 
Personalized Diagnosis: Extended generative models 
can take a patient’s neuroimaging information to 
determine specific patterns and anomalies that may 
not be apparent by other means of analysis. These 
models produce pseudo-images to represent the 
patients’ brain performance, thus aiding in the 
development of a fairly accurate and unique 
diagnostic outlook. Such an approach in diagnosing 
helps identify neurological disorders, for instance, 
Alzheimer’s disease, multiple sclerosis, or brain 
tumors in their early stages. This may also 
significantly increase the probability of a correct 
diagnosis. As soon as one is diagnosed with a 
condition, generative models can be used to come up 

with treatment plans. By modeling the influence of 
the treatments on an individual’s brain, the doctors 
can estimate how a certain patient would react in the 
presence of alternative fine treatment methods. It 
aids in treatment plan choice, side effect reduction, 
and enhancing patients’ status. For instance, with 
generative models, one can think of an application in 
the ability to handle epilepsy or the prognosis of 
different possibilities of surgical operations that 
should spare critical areas in the patient’s brain for 
surgeons. Generative models also help in 
personalized prognosis and predict the progression 
of neurological diseases by analyzing longitudinal 
neuroimaging data. These models can generate 
future scenarios for disease progression. This 
predictive capability is critical when managing 
chronic neurological conditions, especially in 
continuous monitoring and timely intervention-
where quality of life can substantially be improved. 
Generative models have the capability to develop 
virtual representations of patients' brains, 
replicating their distinct attributes and functionality. 
These digital replicas provide a safe environment for 
analyzing various medical conditions, predicting 
disease progression, and evaluating potential 
treatments without any risk to real patients. This 
innovative approach enhances our comprehension of 
individual differences in neurological disorders and 
accelerates the creation of targeted therapies 
tailored to each patient's specific needs. By 
leveraging generative models, researchers can 
significantly improve neuroimaging quality, 
personalize medical care, and refine diagnostic and 
treatment methodologies. The practical applications 
of generative models, as outlined in Table 6, 
showcase their extensive impact on neuroimaging. 
These models are not only valuable in refining image 
quality but also play a crucial role in improving 
diagnostic precision, predicting disease outcomes, 
and customizing treatment strategies. Various 
approaches, including GANs, VAEs, and digital twin 
technology, are helping to develop more reliable and 
adaptable AI systems. The integration of these 
methods with traditional machine learning 
techniques presents new possibilities for enhancing 
clinical diagnostics and medical decision-making. 

Advanced techniques such as GANs and VAEs 
contribute to expanding neuroimaging datasets by 
generating synthetic images, thereby improving 
model accuracy and robustness. Convolutional 
autoencoders (CAEs) and GANs help refine image 
quality by removing noise, enhancing resolution, and 
eliminating distortions. Super-Resolution GANs 
(SRGANs) improve image clarity for better 
anatomical studies, while conditional GANs facilitate 
cross-modal imaging, generating missing scan types 
as needed. Autoencoder-based models are 
instrumental in identifying structural abnormalities 
in the brain, thereby aiding in the detection of 
neurological diseases. Diffusion models further 
enhance neuroimaging by filling in missing data, 
leading to more comprehensive imaging results. The 
combination of digital twin technology, VAEs, and 
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deep learning supports the simulation of disease 
progression and treatment responses, fostering the 
development of personalized medical interventions. 
Additionally, generative models enable the creation 
of detailed, patient-specific brain atlases that reflect 
unique anatomical and functional characteristics, 
thereby improving accuracy in both research and 
clinical applications. These AI-driven approaches 
have proven effective in detecting neurological 
disorders such as Alzheimer's disease and brain 
tumors with greater precision. Through personalized 
simulations and digital twin models, generative AI 
aids in formulating customized treatment plans, 
ultimately improving patient outcomes. 

4. Challenges and future directions 

Despite their transformative potential, generative 
AI applications in neuroimaging encounter multiple 
challenges, including data limitations, 
interpretability issues, computational resource 
constraints, generalization difficulties, and ethical 
concerns. One of the primary obstacles is the scarcity 
of high-quality neuroimaging datasets, as acquiring 
such data is expensive and subject to strict ethical 
and privacy regulations. The inherent variability in 
imaging modalities, such as MRI, fMRI, and PET 
scans, further complicates model training, making it 
difficult to develop AI systems that perform 
consistently across different datasets. Demographic 
imbalances in training data can introduce biases, 
leading to reduced model performance for 
underrepresented groups. To address these issues, 
researchers must focus on improving data 
augmentation techniques, standardizing imaging 
protocols, and developing bias mitigation strategies 
to enhance fairness and reliability. Other challenges 
include instability in GAN training, high 
computational costs, and difficulties in interpreting 
model decisions, which hinder their adoption in 
clinical settings. Overcoming these limitations 
requires the development of stable model 
architectures, efficient training methodologies, and 
domain-specific optimizations. Generative models 
hold immense potential to advance neuroimaging by 
refining image quality, improving diagnostics, and 
enabling precision treatment. Their applications 
extend beyond imaging enhancements to include 
brain mapping, disease modeling, and predictive 
analytics, thereby shaping the future of neuroscience 
research and clinical care. Continuous innovation in 
this field will be key to unlocking new insights into 
complex neurological conditions and improving 
patient care through AI-driven precision medicine. 

Model interpretability remains a significant 
challenge, as the complexity of generative AI often 
obscures its decision-making processes. For 
successful integration into clinical practice, 
researchers and healthcare professionals must be 
able to understand and validate AI-driven 
conclusions. The development of transparent AI 
architectures and user-friendly interfaces that 
visualize decision-making processes will be essential 

for building trust and facilitating clinical adoption. 
Enhancing interpretability will also aid in identifying 
potential errors and validating model outputs in 
real-world medical applications. The computational 
demands of generative models pose another major 
challenge, especially for institutions with limited 
access to high-performance computing resources. 
Training deep generative AI systems requires 
significant computational power, leading to high 
costs, extended processing times, and considerable 
energy consumption. The environmental impact of 
energy-intensive computations further raises 
sustainability concerns. To address these challenges, 
researchers should explore efficient model 
architectures, optimize hardware usage, and 
implement alternative computing solutions such as 
distributed and cloud-based processing. Reducing 
computational costs will be critical in making 
generative AI more accessible for widespread use in 
neuroimaging and medical applications. 

Ensuring the robustness and adaptability of 
generative models is another critical concern, as 
models trained on specific datasets may not 
generalize well to unseen or diverse real-world data. 
Improving the generalization capabilities of these AI 
systems will enhance their clinical reliability and 
effectiveness in medical decision-making. 
Researchers must focus on advancing training 
methodologies and refining validation techniques to 
ensure generative models can adapt to diverse and 
noisy clinical datasets. 

Ethical considerations play a crucial role in the 
responsible development and deployment of 
generative AI in medical imaging. As synthetic data 
becomes more prevalent in research and clinical 
settings, it is imperative to address privacy risks, 
bias mitigation, and ethical use. A major concern is 
data privacy, as AI models often rely on sensitive 
medical datasets for training. This raises the risk of 
data breaches, patient re-identification, and 
confidentiality violations. To safeguard patient 
privacy, robust governance frameworks must be 
established, incorporating measures such as 
differential privacy, data anonymization, and secure 
training protocols. However, achieving complete 
anonymization remains a challenge, as sophisticated 
re-identification techniques can sometimes extract 
personal data from seemingly anonymous datasets. 
Balancing privacy protection with AI model 
effectiveness is a key consideration for ensuring 
secure and ethical AI applications. Bias in AI-
generated neuroimaging data is another pressing 
issue, as models can inherit and amplify biases 
present in training datasets. These biases can lead to 
disparities in diagnostic accuracy and treatment 
recommendations, particularly for underrepresented 
populations. To address this, researchers must 
implement fairness-aware algorithms, adversarial 
debiasing techniques, and diverse training datasets 
to improve model equity and reliability. Ensuring 
demographic inclusivity in training data is essential 
to preventing biased AI outcomes and promoting 
fairer healthcare applications. 
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Another ethical risk involves the potential misuse 
of synthetic data in medical applications. While 
generative AI offers numerous benefits, it also 
presents the possibility of fraudulent medical 
records, manipulated diagnostic data, and the 
creation of deepfake medical images. Such unethical 
uses could erode public trust in AI-driven healthcare 
and cause significant harm. In research settings, 
falsified synthetic data could distort scientific 
findings, leading to flawed medical conclusions. 
Similarly, in commercial applications, unethical use 
of AI-generated medical data could lead to 
misleading marketing or exploitative practices. To 
prevent such risks, regulatory frameworks and 
ethical guidelines must be established to ensure 
responsible AI deployment in neuroimaging. 
Transparency in model development and decision-
making will be crucial in maintaining accountability 
and trust in AI applications. 

Addressing the computational and ethical 
challenges associated with generative AI requires 

continuous advancements in privacy-preserving 
techniques, fairness optimization, and sustainable 
computing solutions. Efficient model architectures, 
transfer learning, and energy-efficient hardware can 
help reduce computational costs while maintaining 
high performance. Cloud computing and distributed 
processing offer scalable solutions for handling large 
neuroimaging datasets while minimizing 
environmental impact. Ensuring equitable access to 
AI resources is also critical in closing the gap 
between well-funded research institutions and 
under-resourced healthcare providers. A concerted 
effort from researchers, policymakers, and industry 
stakeholders will be necessary to ensure the ethical, 
fair, and sustainable development of generative AI in 
neuroimaging. 

Table 7 summarizes the key challenges and 
future directions in applying generative models to 
neuroimaging, highlighting the ongoing efforts 
required to optimize these technologies for 
widespread clinical use. 

 
Table 7: Challenges and future directions in generative models for neuroimaging 

Challenges Description Future directions 

Data limitations 

Data scarcity, heterogeneity across modalities (e.g., MRI, fMRI, 
PET), and biases in datasets hinder the development of robust 

models. Limited dataset size and ethical concerns further 
complicate model training 

Develop techniques for augmenting and 
harmonizing datasets. Focus on overcoming biases 

and increasing data diversity for better model 
generalization 

Interpretability and explainability 
Complex models are difficult to interpret, limiting their clinical 

adoption. Clinicians require transparency to trust and utilize these 
models effectively 

Focus on developing interpretable and transparent 
models, with tools that allow clinicians to 

understand the decision-making process and model 
outputs 

Computational cost 
Training generative models requires high computational resources, 
limiting accessibility for many research institutions and healthcare 

providers 

Design more efficient algorithms and leverage 
hardware optimization to reduce the computational 

burden, making models more accessible for 
practical use 

Generalizability and robustness 
Models trained on specific datasets may not perform well on 
diverse or noisy data, reducing their reliability in real-world 

applications 

Improve model generalization and robustness, 
ensuring reliable performance on unseen data and 

in varying conditions, particularly in clinical settings 

Ethical considerations 
Data privacy and misuse of generated images (e.g., fake medical 
records) pose significant risks. Secure storage, processing, and 

ethical standards for model deployment are essential 

Establish robust data governance frameworks and 
ethical guidelines to ensure patient confidentiality, 

transparency in model development, and ethical use 
of generated images 

Exploring novel applications 
Generative models can extend beyond traditional tasks to simulate 
disease progression, predict treatment outcomes, and personalize 

medicine 

Explore new applications such as simulating disease 
progression, creating personalized brain models, 
and predicting treatment outcomes for improved 

healthcare delivery 

Integrating multimodal data 
Combining different neuroimaging modalities (e.g., MRI, fMRI, PET) 
can provide a comprehensive view of brain structure and function, 

enhancing the capabilities of generative models 

Focus on integrating multimodal data to provide a 
more holistic understanding of brain health, 

improving the overall effectiveness and precision of 
generative models 

 

There are several key research avenues that can 
enhance the effectiveness and usability of generative 
AI in neuroscience imaging. Enhancing 
computational efficiency and improving model 
transparency will aid in making better clinical 
decisions. Expanding the role of generative AI 
beyond standard image processing—such as 
modeling disease progression, forecasting treatment 
responses, and creating individualized brain 
models—can drive advancements in precision 
medicine. Strengthening data augmentation 
strategies will help mitigate data shortages while 
promoting more diverse and representative training 
datasets. Moreover, incorporating multimodal 
neuroimaging data by integrating MRI, fMRI, and 
PET scan insights can offer a more holistic view of 
brain structure and function, leading to more 
accurate and reliable AI models. Although generative 
AI has the potential to revolutionize neuroscience 

imaging, it is essential to tackle challenges such as 
data scarcity, computational demands, model 
interpretability, generalization, and ethical 
considerations. Addressing these hurdles will 
facilitate the development of more reliable, 
transparent, and clinically relevant AI-powered 
neuroimaging solutions. 

5. Conclusion 

This review exemplifies the transformative 
potential of generative AI for neuroscience imaging, 
from GANs, VAEs, diffusion, and flow-based models. 
It improves the image quality and can also augment 
synthetic data to overcome scarcity issues, and it 
also improves diagnostic accuracy by removing noise 
and artifacts. More importantly, generative models 
are essential for doing robust data augmentation, 
which would improve training as well as the 
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generalization ability of the machine learning 
algorithm for better diagnostics. These models 
further extend image enhancement capabilities, such 
as denoising and super-resolution, to support more 
accurate, clearer neuroimaging critical for clinical 
care. Their utility in modeling and simulating disease 
helps reveal mechanisms, thereby accelerating 
personalized treatment development. Limitations in 
data (lucidity, heterogeneity, bias), model 
interpretability, computational costs, and 
generalization to diverse data remain open areas of 
future work. The development of more efficient and 
interpretable generative models is needed to achieve 
higher clinical impact. Exploring novel 
applications—simulating disease progression, 
predicting treatment outcomes, creating 
personalized brain atlases—holds immense 
potential for revolutionizing personalized medicine. 
Addressing ethical considerations, including data 
privacy and responsible use, is paramount. 
Generative AI promises to revolutionize 
neuroscience imaging, enhancing data quality, 
improving diagnostics, and enabling personalized 
medicine. While challenges remain, ongoing research 
will overcome these obstacles, establishing 
generative AI as a central tool for advancing 
neuroscience and improving patient care. Future 
research efforts should focus on creating more 
efficient, interpretable, and robust models, exploring 
novel applications, and ensuring ethical and fair use 
of these powerful tools. The future implications for 
innovation and impact are vast. 
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Deep convolutional generative adversarial 
network 
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GAN 

Dual multilevel constrained attention GAN 

DTI Diffusion tensor imaging 
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FBN Functional brain network 
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fMRI Functional magnetic resonance imaging 
GANs Generative adversarial networks 
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MDD Major depressive disorder 
MCI Mild cognitive impairment 
ML Machine learning 
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MSE Mean squared error 
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