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Recently, there have been efforts to create automated systems for diagnosing 
engine problems using sound detection. However, most of these methods 
lack robustness and interpretability, functioning as "black boxes" that make 
it difficult to understand their decision-making processes. The Learning 
Classifier System (LCS), a machine learning approach that operates using a 
set of rules, has demonstrated potential for providing robust, interpretable, 
and generalizable solutions across different domains. This work aims to 
develop a new LCS-based system for automatically detecting engine 
problems, with a focus on making its decision-making process 
understandable, contributing to explainable artificial intelligence. The 
system's performance is evaluated using features from the time domain, 
frequency domain, and time-frequency domain. Its robustness is tested with 
noisy sound data gathered under various normal and abnormal conditions. 
Experimental results show that this new approach outperforms conventional 
state-of-the-art methods by 2.6%−6.0%, achieving a maximum performance 
accuracy of 98.6%. 
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1. Introduction 

*The automobile has undergone a significant 
transformation from being a luxury item to an 
indispensable part of our daily lives. It has 
revolutionized how we travel, making it more 
convenient and flexible than ever. Reliability is a 
crucial parameter that determines the overall quality 
and performance of an automobile (Chen et al., 
2021). It refers to the ability of an automobile to 
perform consistently and dependably over time 
without frequent breakdowns or unforeseen issues. 
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The engine of an automobile is often considered to 
be the heart of the vehicle, and it plays a pivotal role 
in its overall performance (Rashidi et al., 2025). 
Automobile reliability is closely linked to engine 
potential dangers (Theissler et al., 2021). The 
engine’s sound offers great information about an 
automobile’s condition and performance, providing 
valuable insights into potential issues within various 
engine components. It has been observed that when 
an automobile operates normally, it produces a 
consistent and regular sound. A sample spectrum of 
a standard sound signal emitted by a well-
functioning engine is shown in Fig. 1. However, if an 
engine or its component has an underlying problem, 
the engine sound will undergo noticeable changes, 
becoming distinct from the normal operating sound. 

For instance, when engine oil quality degrades, 
the piston faces difficulty moving smoothly. 
Consequently, it generates a harsh sound, a sign of 
an oil-related issue. The timing chain, another crucial 
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component, controls the valves. If not securely 
fastened, it can vibrate, leading to an altered sound. 
A squealing sound often indicates a loose or worn-
out serpentine belt that controls all engine 
accessories, such as the alternator and water pump. 
A grinding sound in a car could be due to worn-out 
bearings, clutch, or a bad CV joint. It’s serious and 
requires prompt attention to prevent further 
damage. A Knocking sound is often described as a 
pinging or metallic knocking sound while driving. It 
can be caused by uneven burning of fuel in the 
cylinders and should be looked at right away. The 
most common reasons for engine popping are a 
clogged fuel filter, ignition problems, fouled or dirty 
spark plugs, damaged plug wires, or a faulty catalytic 

converter. The sample spectra of such anomalous 
sound signals are presented in Fig. 2. These 
abnormal acoustic signals from the engine indicate 
the presence of various potential faults. A clear 
distinction can be observed between the normal and 
anomalous sound spectrums, aiding in identifying 
potential engine issues. Experienced drivers are 
adept at recognizing different sounds and their 
potential implications for the vehicle. They can 
connect these sounds to possible issues with the car 
and use this information to determine what needs to 
be fixed. Finding the patterns from signals and 
classifying them into meaningful information is 
called signal processing. 

 
Fig. 1: Normal engine sound spectrum 

 

The remainder of this paper is organized as 
follows: Section 2 presents the fundamental 
background information necessary for sound-based 
engine problem diagnosis. The primary objective of 
this section is to establish a comprehensive 
understanding of the key concepts essential to 
engine acoustic analysis, thereby providing a 
contextual foundation for the ensuing discussions. 
Following this, Section 3 outlines the specific 
objectives and advantages related to the study, 
providing a clear framework for the subsequent 
exploration of the subject matter. Section 4 explains 
the important components and the overall workflow 
of LCS. Section 5 describes how an LCS-based system 
can be created to detect vehicle problems. Finally, 
Section 6 presents a summary of the findings and 
offers recommendations for future work.  

2. Background 

Vehicle engine sounds are complex and dynamic 
signals that reflect the engine’s state, performance, 
and operation. They differ from other machine 
sounds, which are often stationary or periodic 
signals with clear features and patterns. Engine 
sounds are highly non-stationary and non-linear 
signals that change depending on various factors, 
such as driving conditions, speed, load, and 
environment. Mechanical objects always make a 

unique sound that experts can use to figure out what 
they are (Marzo et al., 2015). They carry valuable 
information that can help to accurately determine 
the spatial location and orientation of their source. 
Each signal has a certain amount of energy and a 
specific wavelength. Spectral peaks are the 
frequencies in a signal that have the highest 
amplitudes. Originating signals have information 
about the actual condition of the source. They are 
distinguished from each other by the attributes they 
possess. The meaning of sound signals can vary 
based on these values at different time intervals. 
Spectral peaks can be used to identify a signal’s 
frequency components and analyze its properties.  

There is no single mathematical equation that can 
accurately model the sound produced by a vehicle 
engine. However, several mathematical models can 
simulate the sound of an engine. One such model is 
the engine order sound model. This model is based 
on a short-time Fourier transform and synthesis 
technique, implemented using an active sound 
generation (ASG) system (Cao et al., 2020). At a 
certain Se, the engine order sound can be expressed 
as, 
 

𝑋(𝑆𝑒) = ∑  𝑁
𝑟=1 𝐴𝑟sin (𝑟 ×

𝜋

60
𝑆𝑒 + ∅𝑟)                                     (1) 

 

At engine speed Se, Ar gives the instantaneous 
amplitude of engine order r or 0.5r. ∅𝑟  gives the 
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instantaneous phase, where N is the total number of 
possible engine orders. In the temporal domain, the 
computation of the continuous-time signal of engine 
order r, denoted as xr(t), can be determined as 
follows: 
 
xr(t) = Ar(t) · sin[2πfrt + ϕr(t)]                                                   (2) 
 

where, Ar(t) is the instantaneous amplitude of engine 
order 0.5r at time t; ∅𝑟(t) is the instantaneous phase 
of engine order 0.5r at time t; and fr is the frequency 
of engine order 0.5r. Therefore, the continuous-time 
signal of engine orders Xr(t) can be expressed by the 
following equation: 
 

𝑋𝑟
𝑟=1

𝑁

(𝑡) = 𝑋𝐴𝑟(𝑡). 𝑠𝑖𝑛[2𝜋𝑓𝑟𝑡 + ∅𝑟(𝑡)]                                        (3) 

 

To ensure the accuracy of engine order sound, it 
is important to get a good idea of the frequency of 
each order at all times and figure out the amplitudes 
and phases of all the order’s parts with the right 
level of accuracy. The engine order sound model is 
an important tool for sound experts and engineers 
involved in designing and developing vehicle sound 
simulation systems. Another mathematical model 
that can be used to simulate the sound of an engine 
is the quasi-steady-state model (Segel and Slemrod, 
1989). This model is based on the assumption that 

the engine is operating at a steady-state condition 
and that the sound produced by the engine results 
from the gas pressure fluctuation in the combustion 
chamber. The quasi-steady-state model can be used 
to predict the sound pressure level of an engine 
under different operating conditions. It is important 
to note that these models are imperfect and might 
not always accurately simulate an engine’s sound. 
However, they are useful tools for sound experts and 
engineers designing and developing vehicle sound 
simulation systems.  

In a traditional approach, an expert known as an 
engine listener carefully listens to the engine’s sound 
to identify abnormal signs or faults in the vehicle. 
Engine listeners can associate these specific noises 
with potential problems. Most automakers, such as 
Ford, have been using professional engine listeners 
to ensure the quality of their vehicles (Keshun and 
Huizhong, 2023). These professionals are trained to 
quickly observe abnormalities in the engine sound 
patterns and detect associated faults in the vehicle. 
However, manual inspections are time-consuming, 
labor-intensive, and susceptible to human error. 
Conventional methods rely heavily on diagnostic 
tests, which have inherent limitations. Diagnostic 
tests often require specialized equipment and 
expertise, making them costly and inaccessible to 
many users. 

 

  
(a) Transmission Issue (b) Struct Problems 

  
(c) Engine sound running without oil (d) Piston slapping sound 

Fig. 2: Abnormal engine sound spectrum (all horizontal axes are time (s)) 
 

2.1. Machine learning based acoustic analysis 
systems 

Recently, there has been a growing interest in 
creating acoustic systems that are driven by machine 
learning to find and classify engine problems. These 
methods are considered a good alternative to 
traditional ones (Kumar et al., 2022). Because there 
are no sound alphabets, traditional sound analysis 
methods like the Hidden Markov Models (HMM) 
(Nasim et al., 2023a) cannot be used in these 
situations. Machine learning (ML) algorithms are 
powerful tools for analyzing and learning from data, 
as they can automatically discover patterns (You et 
al., 2023), make predictions, and improve their 
performance based on experience. These algorithms 
can be applied to different kinds of data, including 

text, audio, images, speech, or numbers. They can 
solve problems such as classification, regression, 
clustering, or dimensionality reduction. The 
utilization of this technology has already 
demonstrated its ability to enhance physicians’ 
diagnostic accuracy, facilitate the selection of more 
efficacious treatment options, and even anticipate 
patient prognoses. Random forest trees, Support 
Vector Machines (SVM), Artificial Neural Networks 
(ANN), and Dense Neural Networks (DNN) are 
among the robust algorithms employed for the 
identification of various diseases based on medical 
sounds, including heart, lung, and breath sounds. 
Recognizing this huge potential of ML, researchers 
have increasingly applied it to engine sound 
processing for fault detection. They are using ML-
based systems to analyze the spectrum of engine 
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sounds to identify vehicle faults. These systems 
leverage significant advancements in signal 
processing, machine learning, and AI to 
automatically analyze the acoustic signatures 
emitted by various automobile components. These 
systems can detect abnormal patterns or deviations 
that indicate potential faults or malfunctions by 
capturing and analyzing acoustic signals.  

A recent study by Ali et al. (2023) introduced a 
new method called the deformable feature map 
residual network. This network identifies car 
engines by adaptively adjusting the pixels in the 
input feature map and then combining them with the 
convolutional feature map. They used Mel frequency 
cepstral coefficients (MFCC) features and reported 
an accuracy of 84.28% on a car engine sound 
dataset. Another study by Qureshi et al. (2015) 
addressed the problem of automatic vehicle and 
engine identification using audio information. They 
used spectral features, such as MFCCs, Perceptual 
Linear Prediction (PLPs), Linear Prediction Cepstral 
Coefficient (LPCCs) (Ullah et al., 2023), and temporal 
features (ZCR, STE). They employed SVMs and kNN 
classifiers and evaluated their performance on a 
dataset of 100 recordings from 10 different vehicles. 
Another study by Singh and Krishnan (2023) 
presented a comprehensive review that covers 
different artificial intelligence applications, such as 
assistive technology the feature extraction 
techniques for EEG signal analysis in various 
domains, such as time, frequency, decomposition, 
time-frequency, and spatial. Rehmani et al. (2024) 
proposed a deep feature selection method for engine 
fault diagnosis based on a hybrid autoencoder. They 
used a combination of a convolutional autoencoder 
and a sparse autoencoder to extract features from 
engine vibration signals and select the most relevant 
features based on mutual information. They test 
their method on a diesel engine test bench and 
achieve high accuracy and robustness. These studies 
exemplify the ongoing advancements in leveraging 
machine learning for engine fault detection. They 
explore diverse feature extraction techniques, 
classifier architectures, and sound classification 
tasks, paving the way for more robust and accurate 
engine diagnostics in the future. Detecting and 
classifying vehicle faults based on ML offers several 
advantages, including real-time monitoring, non-
intrusiveness, and cost-effectiveness. ML-based 
sound detection and classification systems have the 
potential to revolutionize engine diagnostics.ML can 
quickly and accurately analyze large amounts of 
sound data and extract meaningful patterns. Deep 
learning models can handle noisy and large-scale 
data in a better way. They can learn complex and 
high-level features from multidimensional raw audio 
signals. The advent of deep learning (DL) has 
revolutionized engine fault detection with its ability 
to learn complex patterns from diverse data sources 
(Sahin et al., 2023), including audio signals. They 
have achieved state-of-the-art performance in 
various audio classification tasks, such as speech 
recognition, music genre classification, and 

environmental sound classification (Zaman et al., 
2023). A novel convolutional neural network model 
was suggested that uses temporal and frequency 
attention mechanisms to learn time and frequency 
features from the log-Mel spectrogram more 
effectively for environmental sound classification 
(Mu et al., 2021). 

2.2. Challenges of ML algorithms 

Despite the significant contributions of previous 
studies, there is a research gap in the sound analysis 
of automotive engines for problem diagnosis and 
classification. Firstly, much research has been done 
on acoustic analysis to identify types of vehicles and 
engines. These studies have looked at a wide range 
of topics, such as highlighting the difference between 
sounds coming from different parts of cars, engines, 
or machines, sorting noisy or vehicle sounds into 
different categories, identifying internal vehicle 
sounds (Anwar et al., 2022), and figuring out what’s 
wrong with machine parts. However, none of these 
studies have explored using automotive acoustic 
signals for fault detection and classification, 
particularly for issues such as timing belts, piston 
slapping, struts, radiators, etc. Only a few studies 
have been conducted on detecting automobile 
engine defects using engine sounds. Current vehicle 
fault detection techniques do not adequately identify 
specific engine problems (Nasim et al., 2023b). The 
major problem with the lack of research work in this 
area is the unavailability of a well-tested data set 
that comprises most of the vehicle problems. A few 
authors, such as Wu et al. (2022), used the Audio Set 
dataset (Gemmeke et al., 2017) and the VGGSound 
dataset (Chen et al., 2020) and achieved 84.28% 
accuracy using a deformable feature map residual 
network. 

Secondly, ML and DL algorithms are highly 
effective instruments for analyzing and acquiring 
knowledge from data. However, they face challenges 
when dealing with real-world data sets. Their 
vulnerability to missing data, noisy data, outliers, 
and categorical data is a serious challenge in dealing 
with new problem sets such as automotive engine 
sound data. When outliers are present in a dataset, 
they can skew statistical measures such as the mean 
and standard deviation, leading to inaccurate model 
training and prediction results. Outliers may 
introduce noise or bias into the learning process, 
causing the model to give excessive importance to 
these extreme values. Consequently, the model’s 
generalization and predictive performance can be 
compromised.  

Also, data issues can affect machine learning 
models’ quality, reliability, and performance and 
require appropriate handling methods. ML-based 
systems lack robustness and transparency, making 
their results challenging to interpret and trust. DL 
models work similarly to black boxes. They hide the 
decision-making processes, and users are left in the 
dark about how they arrive at their conclusions. 
Even the most advanced neural networks can exhibit 
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mysterious and obscure characteristics that are 
difficult to comprehend. This lack of clarity can be a 
problem in critical situations, like classifying engine 

sounds, where a correct diagnosis depends on 
understanding how a model came to its conclusions. 
We have elaborated on these challenges in Fig. 3. 

 

Lack of 
Transparency

Noise
Vulnerable

Vulnerability
To missing 

data

Outlier
Effect

Lack of 
Interpretability

ML 
LIMITATION

 
Fig. 3: Machine learning gaps 

 
Explainability is crucial in vehicle engine fault 

diagnosis, as it can help the mechanics and the users 
understand the causes and solutions to the 
problems. To address these challenges, researchers 
are exploring novel approaches like explainable 
Machine Learning that promise to unlock the inner 
workings of DL models and make them more 
accessible and understandable to users. 

3. Objectives and advantages 

The proposed system will be able to explain its 
decision-making process clearly and understandably. 
This is an essential feature of explainable AI, which 
aims to make artificial intelligence more transparent 
and accountable. The system can increase its users’ 
and stakeholders’ trust and confidence by providing 
interpretable explanations. The proposed solution is 
to design a Learning Classifier System-based system 
that can effectively learn the underlying engine 
sound patterns and provide efficient and reliable 
detection of vehicle problems. The primary objective 
of this study is to create an LCS-based system for 
automatically detecting vehicle problems. The 
system will be able to receive a sound signal, identify 
underlying patterns, and predict the engine problem. 
To attain this goal, the subsequent objectives have 
been established: 
 
1. Create a novel LCS-based system to receive an 

input sound signal and predict associated engine 
problems. 

2. Develop techniques for analyzing and identifying 
underlying patterns in a sound signal. 

3. Compare existing Machine learning approaches for 
engine fault detection, outlining their strengths 
and limitations. 

 
Learning Classifier System (LCS) has emerged as 

a powerful explainable approach for sound analysis. 
It learns from experience and improves its 
performance over time. Unlike traditional ML 
algorithms, it effectively handles datasets in a more 
explainable manner. It provides interpretability by 
generating human-readable rules, allowing domain 

experts to understand and validate the system’s 
decision-making process. LCS excels in dynamic and 
changing environments, as its evolutionary nature 
allows it to adapt and evolve continuously. This 
adaptability has been leveraged in applications such 
as autonomous robots and adaptive control systems. 
It identifies patterns that traditional machine-
learning methods may miss. This algorithm can 
handle noisy data, which can be a problem for 
traditional machine-learning methods. It can handle 
large and complex data sets with many attributes, 
common in new datasets. It can incorporate domain 
knowledge. This is a significant advantage because it 
can improve the algorithm’s performance by 
incorporating the expertise of the problem domain. 
These systems have already demonstrated 
explainability in speech recognition, music 
classification, environmental noise monitoring, and 
biomedical signal processing (Carter et al., 2023; 
Zinemanas et al., 2021; Ahmed et al., 2024; 
Dissanayake et al., 2020).  

Various types of LCS, such as Michigan and 
Pittsburgh, have been applied in sound analysis 
tasks. For example, Ndou et al. (2021) used LCS to 
select the optimal frequency bands and time frames 
from the spectrogram that are most relevant for the 
classification task. These studies highlight the 
potential of LCS in engine fault detection and 
diagnosis, showcasing the effectiveness of rule-based 
systems in handling complex engine data. The 
conceptual Taxonomy of XAI Methods has been 
summarized in Table 1. Multiple explainable 
methods have different types of explainability at 
different levels of explainability and in different 
types of applications. We have listed them all in 
Table 2. 

4. Learning classifier system (LCS) 

The first LCS, "Cognitive System One" or CS-1, 
was developed by Holland and Reitman. LCSs are a 
class of machine learning algorithms that combine 
reinforcement learning, evolutionary computation, 
and rule-based representation to learn from data 
and adapt to changing environments. LCS learns 
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from the input and generates rules that map the 
acoustic features to the corresponding phonetic 
symbols. LCSs use genetic algorithms to generate 
new rules and explore unique niches in the problem 
space. The LCS develops a set of classifier rules 
during training that cooperate to solve the current 
problem, with each rule’s fitness being based on how 
much it contributes to the solution. In the learning 
process, LCSs improve the fitness of good rules and 
produce new, fitter rules. 

4.1. LCS framework 

The algorithm generates a set of guidelines that 
specify how to categorize data according to 

particular characteristics or traits. If-then sentences 
that connect input data to output predictions are 
used to express these principles. For instance, "if the 
input data has attributes A, B, and C, then predict 
output Y."  

Next, the system predicts fresh, unseen data 
using these criteria. The algorithm modifies the rules 
to increase accuracy if the predictions are inaccurate. 
Reinforcement learning is used in this process of 
changing the rules. These rules are generated via a 
genetic algorithm. Natural selection is possible 
because of the genetic algorithm. Thus, regulations 
that have been refined through time are more 
precise and beneficial. 

 
Table 1: Conceptual taxonomy of XAI methods 

Dimension Categories 

Interpretability 
techniques 

Feature importance: Quantifying the influence of individual features on model predictions (e.g., LIME, SHAP). 
Attention mechanisms: Visualizing which parts of an input (e.g., pixels in an image) contribute most to the prediction. 

Model distillation: Training a simpler model to mimic the behavior of a complex model, thereby making its reasoning more 
accessible. Counterfactual Explanations: Simulating how changing an input would affect the prediction, providing insight into model 

decision boundaries. Rule-based Explanations: Extracting interpretable rules from the model, similar to decision trees. 

Explainability 
level 

Local: Explaining individual predictions or instances (e.g., why this image was classified as a cat?). 
Global: Explaining the overall behavior of the model (e.g., what are the most important features across the entire dataset?). 

Model-agnostic: Can be applied to any model, regardless of its internal structure (e.g., LIME). Model-specific: Tailored to specific 
model architectures or types (e.g., attention mechanisms in deep learning). 

Application 
domain 

Audio anomaly Detection: Explaining why a sound clip is classified as anomalous. 
Image classification: Explaining why an image is classified as a specific category. 

Natural language processing: Explaining the sentiment or intent behind a piece of text. Risk Assessment: Understanding how a 
model assigns risk scores to individuals. 

Healthcare diagnostics: Making AI-based medical diagnoses more transparent and trustworthy. 

 
Table 2: XAI methods and properties of complex and dynamic data 

XAI method Interpretability technique Explainability level Application domain 

LIME Feature importance Local, model-agnostic 
Image 

classification, text classification 
SHAP Feature importance Local, global, model-agnostic Image classification, tabular data 

Grad-CAM Saliency maps Local, model-specific Image classification 
BERT-ATTACK Attention mechanisms Local, model-specific Natural language processing 

TCAV Model distillation Global, model-specific Image classification 
CEM Counterfactuals Local, model-agnostic Image classification, tabular data 

ProtoDash Prototypes Local, global, model-agnostic 
Image classification, audio anomaly 

detection 
Med-explain Feature importance, counterfactuals Local, model-agnostic Healthcare 

 

An LCS consists of several components, which are 
described according to the order in which they 
appear in the LCS framework: 
 
• Setting: An environment that offers input data 

representing the issue domain is present in an LCS. 
The instances or observations that make up this 
input data each have their characteristics, features, 
and intended results or labels. The surroundings 
create the conditions necessary for the LCS to 
process the input data, learn from it, and make 
judgments. 

• Match set: Every population classifier that satisfies 
the current input requirements for the dataset is 
assembled into a Match Set by the LCS. The 
requirements of these classifiers match or overlap 
with the characteristics of the input instance. 

• Prediction: The Match Set's classifiers provide 
predictions or take actions depending on the 
condition. 

• Rule discovery: If the Match Set is not empty, but 
none of its classifiers provide accurate predictions, 
the LCS employs a rule discovery process. Rule 

discovery involves creating new classifiers with 
conditions derived from the input instance and 
desired outcome. These new classifiers aim to 
learn from the misclassifications and improve the 
system’s performance. 

• Subsumption: The LCS checks for subsumption, 
determining if any existing classifier in the 
population can subsume the newly generated 
classifier. Subsumption occurs when an existing 
classifier can cover the same input conditions as 
the new classifier and provide more accurate 
predictions or actions. 

• Parameter updating: LCS updates the parameters 
of the classifiers in the Match Set and newly 
generated classifiers based on reinforcement 
learning. The fitness values associated with the 
classifiers are adjusted to reflect their 
performance and contribution to successful 
predictions or actions. 

• Rule compaction: LCS performs rule compaction to 
eliminate redundant or less effective classifiers. 
Rule compaction ensures that the population 
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remains concise and efficient, focusing on the most 
relevant and accurate classifiers. 

 
Overall, an LCS combines the power of genetic 

algorithms, which simulate the process of natural 
selection, with reinforcement learning to develop a 
framework that, through interactions with its 
surroundings, may learn and become more adept at 
making decisions. The LCS can tackle complicated 
issues and respond to changing situations by 
iteratively evaluating, selecting, reproducing, and 
altering the classifiers. Typically, an LCS is used to 
specify the problem and generate a population of 
classifiers. Conditions that describe input patterns or 
situations and associated actions that indicate the 
desired response or decision make up each classifier. 
Next, the performance of the classifier population on 
the provided challenge is assessed. The action or 
prediction made by the classifier(s) that were chosen 
in the Match Set based on their greatest fitness 
values is normally the LCS's output. This result 
signifies the choice made. This feedback is then used 
to adjust the parameters or weights of the classifiers, 
enabling them to make better decisions in similar 

situations in the future. The learning process in an 
LCS occurs iteratively over multiple generations. 
During each iteration, the population of classifiers 
goes through evaluation, selection, reproduction, and 
reinforcement learning. The classifiers that perform 
well on the problem are selected to reproduce, 
passing on their knowledge and characteristics to 
the next generation. Through this process, the LCS 
adapts and improves its performance over time. The 
learning in LCS continues until a stopping criterion is 
met. This criterion can be defined as reaching a 
desired level of performance or a maximum number 
of iterations. Once the stopping criterion is satisfied, 
the LCS can be trained and is ready to make 
decisions or solve problems in the given domain. 
Thus, it makes a promising alternative for larger, 
higher-dimensional classification problems. This 
interpretability is a great advantage of this method. 
There are a variety of Learning classifier systems as 
shown in Fig. 4. Each system has its strengths and 
weaknesses. In the next section, we will present a 
short review of different variants to give readers a 
deep understanding of these systems.  

 

Learning
Classifier
system

Match set

Prediction

Environment

Covering
Action set

Population

Computer
Science

Biology
Evolutionary

Computing Genetic
Algorithm

AI Machine
Learning

Supervised
Learning

 
Fig. 4: Learning classifier system framework 

 

4.2. Variants of LCS 

There are many variants of LCS. We will briefly 
analyze them and discuss their strength and 
weaknesses to choose the best fit for our problem. 
Genetic Algorithm Classifier System (GACS) (Dee 
Miller et al., 2015) is a type of LCS that uses genetic 
algorithms to evolve a population of rules that can 
classify data and adapt to changing environments. 
GACS has been applied to domains such as pattern 
recognition, data mining, optimization, and control. 
However, GACS also faces challenges such as 
scalability, interpretability, generalization, and 
robustness. Rule-based classifier System (RBCS) is a 
machine learning algorithm that uses IF-THEN rules 
to classify data into different classes. RBCS can be 
interpretable, flexible, and modular, and can handle 
both discrete and continuous attributes. However, 
RBCS also faces some challenges, such as rule 
extraction, rule pruning, rule ordering, and rule 
evaluation. Reinforcement Learning Classifier 

System (RLCS) (Schönberner and Tomforde, 2022) is 
a type of LCS that uses reinforcement learning to 
learn a population of rules that can interact with an 
unknown environment and maximize a reward 
signal. RLCS can handle sequential decision-making 
problems, partial observability, and delayed 
feedback.  

However, RLCS also faces some challenges, such 
as exploration-exploitation trade-offs, function 
approximation, credit assignment, and policy 
evaluation. Bayesian Classifier System (BCS) (van de 
Schoot et al., 2021) is a type of LCS that uses 
Bayesian inference to learn a population of rules that 
can classify data and update their probabilities based 
on evidence. BCS can handle uncertainty, noise, and 
missing data and can provide interpretable and 
probabilistic rules. However, BCS also faces 
challenges, such as computational complexity, prior 
specification, rule extraction, and rule pruning. Table 
3 highlights some recent studies and their 
explainability models. 
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Table 3: XAI techniques and their approach 
Reference Input data Model architecture Explanation technique 

Mishra et al. 
(2017) 

Spectrogram A decision tree and a random forest 

Local interpretable model-
agnostic 

explanations 
(LIME) 

Zinemanas et 
al. (2021) 

Spectrogram of environmental sounds 

An encoder, a decoder, and a classifier. The encoder 
and decoder are CNNs that learn a latent 

representation of the input spectrogram. The 
classifier is a linear model that predicts the class 
label based on the similarity between the latent 
representation and a set of learned prototypes, 

which are representative examples of each class 

Prototype 
matching in 
latent space 

Dissanayake 
et al. (2020) 

Spectrograms 

CNN based on the VGG16 architecture, with some 
modifications. 

The CNN had 13 convolutional layers, 5 max-
pooling layers, and 3 fully connected layers. 

The CNN was pretrained on the ImageNet dataset 
and fine-tuned on the spectrogram features. 

Saliency maps and Grad-CAM 

Wang et al. 
(2023) 

The heart sound recordings were 
converted into six types of time-frequency 

representations: STFT, LMT, Hilbert-
Huang transform (HHT), wavelet 

transform (WT), Mel transform (MT), and 
Stockwell transform (ST) 

CNN based on the 
ResNet-50 

Layer-wise relevance 
propagation (LRP) 

Carter et al. 
(2023) 

Spectrograms of the cardiac signals CNN and an LSTM network 
Saliency maps and Shapley 

values 
Becker et al. 

(2024) 
Waveform or spectrogram of spoken digits CNN or RNN LRP 

 

5. Methodology 

The dataset contains a diverse range of both 
normal and faulty engine sounds, collected from 
different car models that presented a variety of 
problem scenarios, including timing belt issues, 
piston slapping, strut malfunctions, radiator 
problems, and more, as shown in Table 4. 

 
Table 4: Abnormal sounds data set 

ID Problem type Count 
1 Exhaust prob 40 
2 Hole in muffler 37 
3 Failing water pump 28 
4 Valves tapping 28 
5 Transmission slipping 28 
6 Vacuum hose leak 28 
7 Brake pad 25 
8 Struts 20 
9 Unworn serpentine belt 19 

10 Radiator boiling 18 
11 Engine running without oil 18 
12 Piston slapping 18 
13 Loose heat shield 17 
14 Engine seized 14 
15 Car stopping metal to metal 13 

 

The data was collected under different speeds, 
loads, temperatures, and environmental conditions. 
Although there are various car models and 
manufacturers, they all have the same basic 
structure, which implies that they produce similar 
types of sounds for specific problems. To categorize 
the audio samples based on their types, experienced 
car mechanics provided valuable insights, aiding in 
the labelling process. 

There are 351 abnormal files in the dataset, as 
listed in Table 5. The recorded sound had an audio 
sample rate of 48kHZ with 2(stereo) channels and a 
bit rate of 260kbps with varying length. We used 
these sounds to train a learning model for detecting 
vehicle abnormalities. The dataset contains 214 
normal sounds from vehicles without faults. We used 
these sounds to develop a model to detect normal 

vehicle sounds. The dataset was partitioned into 
training and testing sets to facilitate model 
evaluation and performance assessment. The novel 
approach classifies the sounds made by various 
engines as normal and abnormal. We followed the 
formal ML pipeline for both phases, which includes 
preprocessing, feature extraction, and classification. 
Fig. 5 shows a technology roadmap to briefly 
summarize the main experimental schemes and 
detection methods. 

 
Table 5: Total dataset 

Total abnormal files 351 
Total normal files 214 

Total files 555 

5.1. Feature extraction 

Feature extraction is the technique of pulling 
attributes from an audio signal to generate a signal 
representation that is simpler to process and 
analyze. In pattern recognition, features play a vital 
role. Multiple methods exist to extract features from 
the sound data using different parameters over 
different domains. But for information extraction, 
the most popular types of sound features are time 
domain, frequency domain, and time-frequency 
features. A lot of different statistical functions are 
used in time-domain feature extraction. These 
include mean energy, zero-crossing value, spectral 
entropy, variance value, arithmetic mean, Petrosian 
fractal dimension, median, and more (Table 6). 

These functions help us understand and analyze 
signals based on their time-related attributes. The 
time-domain features only show how the signal 
changes over time. On the other hand, the frequency-
domain features show how the signal changes over 
the frequency band. Rényi entropy, Median 
Frequency, Yule-Walker Spectral Estimation, 
Covariance Spectral Estimation features, etc., are 
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used in this domain. The median calculation is 
derived from the data shown in Table 7. An 
autoregressive (AR) method is used to model the 
spectra of data with higher power spectral density at 

certain frequencies. It is possible to solve a linear 
system with the Yule-Walker autoregressive (AR) 
approach and find the AR parameters, which give 
you the Yule-Walker estimates. 

 

STEP B
Feature Engineering & 
Extraction

STEP C
Model Developmwnt & 
Training

STEP D
Explanation ,Evaluation & 
Comparision

STEP A
Data Acquisition and 
preprocessing : Custom 
dataset creation for engine 
fault detection. Performed 
noise reduction and 
spectral filtering. Improved 
data quality for effective 
feature extraction

TECHNOLOGY ROADMAP

 
Fig. 5: Technology roadmap 

 
Table 6: Temporal features and their mathematical definitions 

Temporal features Formula 

Mean energy 
1

𝑁
∑  

𝑁

𝑖=1
𝑥𝑖

2 

Zero-crossing value 
1

2𝑁
∑  

𝑁−1

𝑖=1

|𝑠𝑔𝑛(𝑥𝑖
 ) + 𝑠𝑔𝑛(𝑥𝑖+1

 )| 

Spectral entropy − ∑  
𝑁

𝑖=1
𝑝𝑖 𝑙𝑜𝑔2(𝑝𝑖)

  

Variance value 
1

𝑁
∑ (𝑥𝑖

 − 𝜇)
𝑁

𝑖=1

2

 

Arithmetic mean 
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1
 

Petrosian fractal dimension 
𝑙𝑜𝑔10(𝑁)

𝑙𝑜𝑔10(𝑁) − 𝑙𝑜𝑔10(𝑁 𝛿⁄ )
 

Median 𝑚𝑒𝑑(𝑥) 

 
Table 7: Frequency domain features table 

Frequency domain Features formula 

Power spectral density 𝑆𝑥𝑥 (𝑓) = lim
𝑇→∞

1

𝑇
𝐸 [|𝑋𝑇 (𝑓)|^2] 

Spectral entropy 𝐻(𝑓)  =  − ∫  
∞

−∞

𝑝(𝑓)log2 𝑝(𝑓)𝑑𝑓 

Spectral flatness 
exp (

1
𝑁

∑  𝑁−1
𝑛−0  log2 (|𝑋(𝑛) |)

       
1
𝑁

∑  𝑁−1
𝑛−0 (|𝑋(𝑛)|)|)

 

Spectral centroid 
 ∑  𝑁−1

𝑛−0  𝑓(𝑛) |𝑋(𝑛)|^2

1
𝑁

∑  𝑁−1
𝑛−0 (|𝑋(𝑛)|^2)

 

Spectral spread √
∑  𝑁−1

𝑛−0  𝑓(𝑛) |𝑋(𝑛)|^2

1
𝑁

∑  𝑁−1
𝑛−0 (|𝑋(𝑛) |)

 

Spectral skewness 
∑  𝑁−1

𝑛=0 (𝑓(𝑛) − 𝜇)^3|𝑋(𝑛)|^2

ϖ^3
 

Spectral kurtosis 
∑  𝑁−1

𝑛=0 (𝑓(𝑛) − 𝜇)^4|𝑋(𝑛)|^2

ϖ^4
 

Renyi entropy H(f) =
1

1 − α
log2 ( p(f)^α 𝑑𝑓) 

Median frequency ∫  
 

𝑚𝑒𝑑

=
∑  N−1

n=0 |X(n)|

2
 

Yule-Walker spectral estimation 𝑆𝑦𝑦(f) =
ϖν

2

|1 + ∑  
p

k=1 𝑎𝑘e 
−j2πkfT|^2

 

Covariance spectral estimation 𝑆𝑦𝑦  (f) =
1

T
𝔼[𝑌𝑇(f)𝑌𝑇

∗(f)] 
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The signal energy is distributed over different 
frequency components in the frequency domain. The 
discrete Fourier transform (DFT) is a mathematical 
tool that performs this transformation, and it can be 
expressed by Eq. 4. Using FFT enables the 
implementation of the DFT with substantially 
reduced computing complexity. 
 

𝐹(𝜛) = ∑  𝑥
𝑥=1  𝑓(𝑥). 𝑒

𝑗2𝜋𝜔

𝑥 , 𝜛 = 1, 2, . . . . . , 𝑛                    (4) 
 

DFT computed using Eq. 5 captures the spectrum 
components present in the data. However, it is 
incapable of detecting temporal fluctuations across 
different frequencies. The time-frequency analysis is 
conducted by using the STFT with a Hamming 
window and a 50% overlap, as seen in Eq:5 
 

(t, 𝜛) = ∑  𝑥
𝑥=1  𝑓(t + 𝑥). w(x). 𝑒

𝑗2𝜋𝜔

𝑥 , 𝜛 = 1, 2, … . . , 𝑛        (5) 
 

The Power Spectral Density (PSD) is a 
mathematical representation that illustrates power 
distribution across different signal frequencies 
within the frequency domain. The data demonstrates 
significant fluctuations across many frequency 
bands, presenting potential value for subsequent 
investigation. The signal was partitioned into 
overlapping windows, and each window’s PSD was 
computed. This Short-Time Power Spectral Density 
(ST-PSD) offers substantial insights into various 
signal components. Features are retrieved from the 
signal to have a comprehensive understanding of it. 

Let I(x) represent the input signal, and a(x) 
denote the autocorrelation of the input signal. 
 
a(x) = I(x) ∗ I(−x)                                                                           (6) 
 

PSD of a signal is defined as the result of the 
Fourier transform of the autocorrelation function of 
the signal and is typically represented as: 
 
P(ω) = F(a(x)) = F{I(x)}F{I(−x)} = F(ω)F∗(ω)                       (7) 
 

Eq. 6 demonstrates that the PSD of a signal may 
be computed by multiplying the Fourier transform of 
that signal with the Fourier transform of its complex 
conjugate. The short-time power spectral density, 
represented as P(t,ω), may be obtained by squaring 
the Fourier transform F(t,ω). 

As a feature vector, the element-wise mean of the 
PSD of each window is used as shown in Fig. 6. The 
length of this feature vector will be the same as the 
size of the window that was used. These are the 
possible ways to write the signal’s feature vector 
based on its short-time PSD(t,ω): 
 

𝐹𝐸(𝜛) =
1

𝑇
∑  𝑇

𝑡 𝑃𝑆𝐷 (𝑡, 𝑤)                                                        (8) 

 

Many sound processing tasks, like speech 
recognition, music analysis, and finding acoustic 
events, use time-frequency features that can be 
extracted using STFT or CWT. These features give us 
useful information about how sound signals change 
over time, which lets us analyze their temporal and 
spectral properties more accurately and completely. 
Time-frequency analysis is a crucial technique in 
sound processing that simultaneously allows the 
examination of temporal and spectral information. It 
breaks down a signal into individual frequencies and 
amplitudes over time. This lets us find transient 
events, harmonic components, and changes in 
spectral characteristics. The Short-Time Fourier 
Transform (STFT), which Gabor proposed in 1946, is 
one widely used method for extracting time-
frequency features. These features are widely 
regarded as the most accurate and exact 
representation of signals seen in real-world 
scenarios. The STFT divides the signal into short, 
overlapping windows and performs the Fourier 
Transform on each window to obtain a time-
frequency representation. This provides insights into 
the signal’s frequency content at different time 
points. The spectrogram, which displays the 
magnitude or power spectrum over time, is a 
common visualization of the STFT. 

 

PSD

PSD PSD PSD

Overlapping
window

N – Sized Vector

MEAN

Signal

 
Fig. 6: STFT feature extraction 
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5.2. Detection of normal/abnormal engine sound 
using ML classifiers 

We have separated the train and test data into 
separate directories. 173 of the 341 abnormal files 
were used for training, and 168 were used for 
assessment. Out of the 214 normal files, 108 are used 
for training, and 106 are used to test our system. We 
used advanced ML algorithms, such as random 
forests and trees, to divide sounds into standard and 
anomalous groups. A decision tree-based model is 
trained to classify normal and anomalous vehicle 
sounds. In the Time domain, ’1’ and ’2’ are 
designated for the target classes. We used ’1’ for 
normal car conditions and ’2’ for abnormal 
conditions. Our model has a correlation coefficient of 
89.98% and 93.98% on the random and random 
forest trees, with an absolute error of 4.74% and 
7.93%, respectively, as shown in Fig. 7. 

 

 
Fig. 7: Temporal features classifier result 

 

The correlation coefficient is a way to measure 
how two factors are related. It goes from -1, which 
means there is no correlation, to +1, which is a 
perfect connection. When the correlation coefficient 
is 0, there is no link between the two factors. When 
the correlation value is low, the data points tend to 
group instead of falling in a straight line. 

There are 104 attributes in the frequency 
domain. Our model exhibits a correlation coefficient 
of 97.25 % and 93.2 %, with a 3.2% and 4.5% mean 
absolute error on the random tree and random 
forest tree, respectively, as shown in Fig. 8. 

 

 
Fig. 8: Frequency domain features classifier result 

 

The time-frequency domain features are obtained 
by transforming the sound signals from the time 
domain to the frequency domain using a 
spectrogram or wavelet transform, which can 

capture more information and patterns of the sound 
signals. Features for the time-frequency domain can 
be recorded with the help of the time-frequency 
transformation, as discussed in the Feature 
Extraction section. The training set built by this 
technique contains 258 attributes each. Within this 
dataset, there exist two distinct classes that serve as 
targets. These classes correspond to normal car 
conditions, denoted by the numerical value ’1’, and 
abnormal car conditions, denoted by the numerical 
value ’2’. The model exhibits correlation coefficients 
of 88% and 96% with mean absolute errors of 5% 
when applied to the random tree and random forest 
tree, respectively, as shown in Fig. 9. 

 

 
Fig. 9: Time-frequency domain features classifier result 

 

These values are comparatively lower than the 
performance of the frequency domain features. Fig. 
10 shows the result of the comparisons. 

5.3. Rule-based machine learning 

Rule-based machine learning is an explainable 
approach that refers to a category of machine 
learning that can recognize, develop, and acquire 
rules to address a specific issue or a specific 
component of a problem. These rules collectively 
provide knowledge of the environment in a piece-
wise manner. Evolutionary Rule-based Machine 
Learning (ERBML) combines the strengths of open-
ended genetic search with powerful machine 
learning techniques. It is gaining popularity due to 
its ability to solve complex problems.  

 

 
Fig. 10: Traditional ML classifier comparison 

 

LCS is a cutting-edge ERBML technique that 
embeds evolution with rule-based machine learning 
to provide efficient solutions for complex problems 
(Hussain et al., 2023; Burhan et al., 2023). LCS can 
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provide unique advantages, such as transparency 
and interpretability, which are highly valuable in 
domains where explainability is crucial. LCSs have 
the inherent ability to split the problem space into 
niches and learn rules to solve the whole problem 
piece-wise. The learned rules are humanly 
interpretable, a step towards explainable AI (Khaliq 
et al., 2022). The LCS we used is ExSTra CS (Bilal et 
al., 2022), which is an extension of LCS that uses 
supervised learning and can handle numerical and 
categorical data. ExSTra CS generated a set of rules 
that human experts can easily interpret and analyze. 
The algorithm starts with the Initialization of the 
population of classifiers from the Dataset. For each 
classifier in the population: 
 

• Calculate the fitness based on the extracted 
features 

• Select the best classifiers based on their fitness 
• Generate new classifiers by applying genetic 

operators such as mutation and crossover to the 
best classifiers 

• Evaluate the performance of the new classifiers 
using a validation dataset 

• Replace the worst classifiers in the population 
with the new classifiers 

 

This pseudocode outlines the basic steps in 
building an ExSTraCS for acoustic-based engine fault 
detection, as shown in Fig. 11. The algorithm uses a 
population of classifiers that are trained and 
evaluated on acoustic data from the engine. Rules are 
usually stored using the ternary notation {0,1,#}. Fig. 
12 shows a rule cluster having 16 attributes. The 

fitness of each classifier is calculated based on the 
extracted features, and the best classifiers are 
selected for reproduction. New classifiers are 
generated by applying genetic operators such as 
mutation and crossover to the best classifiers, and 
the worst classifiers are replaced with the new 
classifiers. This process is repeated until the 
performance of the classifiers is satisfactory. We 
observed that random forest, a tree-based ensemble 
method, achieved high performance on the time-
frequency domain features of problematic engine 
sound. Random forest correctly classified 92.7% of 
the instances on a test set. However, LCS 
outperformed random forest with an accuracy of 
98.6%, which is a remarkable improvement, as 
shown in Fig. 13. 

5.4. Result comparison 

In previous studies regarding vehicle diagnostics, 
the authors focused mostly on the vehicles’ critical 
condition. As shown in Table 8, the authors focused 
on a very limited number of problems. The authors 
applied different techniques, like Artificial Neural 
Networks and MFCC SVM. In one study, Artificial 
Neural Networks were applied to the data, and the 
accuracy of the results went up to 67% for some 
problems.  

For some problems, the accuracy was only 56%. 
A study was also conducted on bike data, focusing on 
four problems. In 3rd top study, the authors focused 
on the three problems and achieved a maximum 
accuracy of 96%. 
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Fig. 11: ExSTra CS architecture diagram 

 

Table 8: Audio analysis comparison 
Reference Problems Technique Results 

Navea and Sybingco 
(2013) 

Vehicle drive belt analyzer, engine start 
analyzer, tune-up analyzer 

ANN 
56% for the vehicle drive belt analyzer and engine 

start analyzer. 67% for tune-up analyzer 
Dandare and Dudul 

(2014) 
Air filter fault, Insufficient fuel supply, and 

insufficient lubricant fault 
ANN, SVM 96% 

Kemalkar and Bairagi 
(2016) 

Bike oil fault, chain fault, crank fault, and 
valve fault 

MFCC 56% to as high as more than 75% for some faults 

Mishra et al. (2017) Music content analysis SoundLIME Accuracy of 85% 

Zinemanas et al. (2021) Sound classification TCN 
Accuracy of 93%,94.6% and 97 % in different data 

sets 
Wang et al. (2023) Heart sound classification CNN Accuracy of 65.2% 
Carter et al. (2023) Heart conditions with spectrogram CNN and LSTM Mean accuracy of 86.7% 
Yong et al. (2023) Vehicle interior sound quality XGBoost 94.3% 

Our study 
Normal/abnormal condition of the car has 

fifteen different problems 
LCS 98.6% 
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A_0 A_1 A_2 A_3 R_0 R_1 R_2 R_3 R_4 R_5 R_6 R_7 R_8 R_9 R_10 R_11 R_12 R_13 R_14 R_15 Class 
1 1 0 1 0 # 1 # # # 0 0 # # 1 1 1 0 0 1 0 
1 0 1 0 1 # 1 # # # 1 1 # # 0 # 0 0 0 0 0 
1 0 1 0 1 # 1 # # # 1 1 # # 0 1 1 0 0 0 0 
1 1 # # # # 0 # # # # 1 # # # # 0 0 # 0 0 
1 1 # # # # 0 # # # # 1 # # # # # 0 0 0 0 
0 0 1 0 # # 0 # # # # 0 # # # # 1 # 1 0 0 
# 1 0 # # # 0 # # # # 1 # # # # 0 0 # 0 0 

Fig. 12: Rules cluster 
 

 
Fig. 13: Performance comparison with conventional ML 

classifiers 
 

The problems targeted in this study are different 
We did extensive research on the issue of vehicles by 
addressing more issues that were not previously 
examined in other studies. Moreover, previous 
studies focused on a single type of car, but we 
focused on the different types of cars in our study. 
We obtained 98% accuracy in detecting the normal 
and abnormal conditions of the vehicle.  

6. Conclusion 

The analysis of vehicle engine sounds for 
diagnosing potential issues is an emerging area of 
research with limited existing literature. Engine 
sounds can be represented using spectrograms, 
which display frequency, amplitude, and time. While 
various sound analysis techniques have been 
developed for fields such as machine fault detection, 
healthcare, music, and speech recognition, these 
methods are not well-suited to vehicle engine 
sounds, which have unique characteristics. 
Traditional approaches may fail to capture the 
specific features and variations in engine noise that 
are critical for accurate diagnosis. 

Different engine problems produce distinct 
acoustic patterns in their spectrograms, particularly 
in terms of resonance frequencies. This study shows 
that these unique sound features can be used to 
identify different engine faults. Accurate sound-
based diagnosis is both important and challenging, 
with valuable applications in vehicle maintenance 
and performance improvement. Early detection of 
engine issues can lead to better performance and the 
development of quieter engines. 

The goal of this research is to automatically 
detect various engine problems by analyzing engine 
sounds. ML algorithms have shown strong 
performance in pattern recognition tasks across 
many domains. However, ML models often operate 
as black boxes, offering limited transparency and 
interpretability. In contrast, rule-based systems, 
such as LCSs, can generate understandable rules 
after training, providing insights into their decision-

making processes. However, LCS suffers from some 
constraints. Scalability of rules, generalization, 
computational complexity, and interpretability are 
these issues. Scalability of rules refers to the number 
of rules required to handle every scenario. The 
ability of the rules to handle novel or unobserved 
instances is known as rule generalization. The 
amount of time and resources required to run the 
LCS algorithm is known as computational 
complexity. Interpretability is the degree to which 
the rules produced by the LCS algorithm are simple 
to comprehend. To overcome these obstacles, 
researchers have suggested several tactics, including 
the use of ensemble learning to enhance rule 
generalization and feature selection techniques to 
lower rule complexity. To minimize dimensionality 
and noise, feature selection approaches identify the 
most pertinent characteristics of the data. Several 
models are combined in ensemble learning to 
increase diversity and overall performance. To 
handle large-scale sound datasets, the computational 
complexity still presents a hurdle that calls for 
optimization techniques. In addition, a lot of the 
rules generated by LCS may be hard for domain 
specialists to understand. 

Acoustic-based engine diagnosis of a vehicle is a 
growing research field with many practical 
applications in different domains. In addition to 
saving both time and cash on manual inspections, 
this task can enhance vehicle performance and 
safety. Because there isn't a standardized dataset for 
engine problems, generating more exact rules would 
be possible with more diversified and reliable data. 
But doing so would also make the system's 
computations more difficult. Subsequent 
investigations ought to concentrate on merging LCS 
with deep learning methodologies, including 
convolutional neural networks, to improve feature 
extraction and classification precision. 
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LPCCs Linear prediction cepstral coefficients 
LRP Layer-wise relevance propagation 
LSTM Long short-term memory 
MFCC Mel frequency cepstral coefficients 
ML Machine learning 
MT Mel transform 
PLP Perceptual linear prediction 
PSD Power spectral density 
RBCS Rule-based classifier system 
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SHAP SHapley additive explanations 
ST Stockwell transform 
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