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Machine learning (ML) plays a key role in intrusion detection systems (IDS) 
and Internet of Things (IoT) security by improving the ability of cyber-
physical systems (CPSs) to resist attacks from malicious users. CPSs combine 
physical components with networking and communication technologies to 
ensure safe and efficient operations. However, attackers often try to disrupt 
or disable the computing resources of these systems. This paper presents a 
new ML-based IDS framework designed for CPSs. To develop this framework, 
an open-source dataset containing different types of cyberattacks and related 
detection features was used. The dataset was labeled and preprocessed to 
make it clean, balanced, and suitable for training ML models. Preprocessing 
steps included handling missing values, normalizing features, and balancing 
the class distribution. Two ML algorithms—Random Forest (RF) and 
Stochastic Gradient Descent (SGD)—were applied to build and train 
classification models for intrusion detection. The experimental results 
showed that the RF model achieved a high accuracy of 99.5%, outperforming 
the SGD model, which reached 93.6% accuracy. In addition to accuracy, 
model performance was also measured using precision, recall, and F1 score. 
The results demonstrate that the proposed IDS is effective in detecting 
cyberattacks and improving IoT security. It offers a scalable and reliable 
solution for protecting CPS environments. This research contributes to the 
development of more secure CPSs by enhancing the trustworthiness, 
robustness, and flexibility of IoT systems. 
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1. Introduction 

*The fusion of Internet-of-Things (IoT) devices 
with cyberphysical systems (CPSs) has led to a new 
epoch of innovation (Blasch et al., 2017). This 
integration facilitates the transfer of data and 
smooth communication underpinning data analytics 
across various sectors (Yaacoub et al., 2020). In core 
sectors, such as manufacturing, healthcare, public 
transport, and urban development, this convergence 
has empowered organizations to enhance their 
operations, boost productivity, and deliver improved 
services (El-Kady et al., 2023). 

As of the year 2023, the size of the global IoT 
market was approximately 486 billion USD, and it is 
expected to continue to increase with a compound 
annual growth rate of 24.7% to 1.6 trillion USD by 
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2025. Increases in the IoT and corresponding CPS 
markets clearly indicate a technical evolution that 
affects various sectors, such as manufacturing, 
healthcare, smart cities, and transportation. The 
integration of IoT and CPSs makes real-time 
interaction and communication between the physical 
and computational spaces possible. 

This integration has boosted operational 
efficiency, preventive maintenance, and decision-
making. For example, the use of the IoT for 
predictive maintenance in manufacturing can cut 
equipment breakdown risk by 50% and increase 
asset lifespans by 20%–40%.  

However, the interconnectivity of CPS and IoT 
also leads to considerable cybersecurity risks, 
mainly because these systems are susceptible to 
attacks that can disrupt processes or exploit 
weaknesses (Djenna et al., 2021; Burg et al., 2017). 
Because of the interconnectivity of CPSs and IoT, the 
types of cyberattacks to which they are most 
susceptible include distributed denial of service 
(DDoS), data leakage and theft, unauthorized access 
and exploitation, and device tampering (Tyagi and 
Sreenath, 2021). Anomaly detection is a specific 
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security research field focused on combatting these 
types of threats. Globally, there are currently 
approximately 30.9 billion IoT devices, and each is a 
potential cyber entry point for unknown actors. 
Cybersecurity Ventures has forecasted that annual 
cybercrime could cost around 10 trillion USD by the 
end of 2025, with IoT devices likely to be the main 
victims of cyberattacks. 

Traditional security mechanisms, such as 
encryption and signature-based methods, play a 
crucial role in intrusion detection systems (IDSs) and 
network device firewalls. However, the dynamic and 
heterogeneous nature of IoT/CPS environments 
poses unique security challenges that traditional 
security measures may struggle to address 
effectively (Burg et al., 2017). These include the vast 
number and diversity of IoT devices, resource 
constraints that hinder the widespread 
implementation of robust security protocols, novel 
avenues of attack, and the interconnection of 
physical and digital worlds, adding layers of 
complexity. In addition, malefactors present at 
various stages of the production process possess the 
capability to compromise devices by introducing 
malware, backdoors, or counterfeit components, 
thereby jeopardizing the security of the devices in 
question (Aly et al., 2019). Hence, the development 
of an intrusion detection system (IDS) tailored to 
CPS and IoT environments is crucial, as these 
emerging threats often elude conventional security 
measures. 

New machine learning (ML) models for real-time 
anomaly detection and for learning new types of 
attacks are a potential approach to more effectively 
protect systems and networks. ML-based studies on 
the contamination practices used to attack IoT/CPS 
implementations rely on big data analysis to detect 
patterns that indicate unauthorized operations. 
Supervised learning, unsupervised learning, and 
reinforcement learning are some of the methods 
used to design these complex anomaly detection 
mechanisms. For instance, supervised learning 
algorithms can easily be trained on labeled data to 
distinguish between normal and anomalous 
behavioral patterns with high accuracy. Clustering 
and autoencoder models, which are examples of 
unsupervised learning, are useful in identifying 
unknown threats because such models can learn the 
regular behavior of the system and then look for 
anomalies. Hence, the primary aim of this study was 
to deploy ML models to accurately predict and 
identify malware attacks that compromise IoT 
security within CPSs. The detailed objectives of the 
study were as follows: 
 
• To investigate the vulnerabilities and principal 

security challenges inherent in CPSs integrated 
with the IoT. 

• To design and implement ML models that can 
detect anomalies within the IoT and CPSs 

• To monitor and assess the performance of IoT/CPS 
environments against cyber threats, thereby 
enhancing their overall availability and reliability 

The knowledge derived from this research will 
benefit the area of cybersecurity, improving our 
understanding of the topic and enabling approaches 
to be designed for mitigating the risk and 
vulnerability of system interconnections and 
improving the performance of secure and sensitive 
infrastructures. 

The subsequent sections are organized as 
follows: a review of the literature is provided in 
Section 2, the research methodology is presented in 
Section 3, and the results from the experiments and 
an analysis and discussion of these results comprise 
Section 4. Finally, the concluding remarks are 
provided in Section 5. 

2. Literature review 

The challenges and opportunities for the 
development and deployment of AI-based attack 
IDSs for IoT devices and CPSs have been extensively 
studied in previous work (Zhou et al., 2019). As 
previously described, because CPSs and IoT devices 
are often interlinked, it is important to take strict 
precautions to protect them against potential cyber 
threats (Ashibani and Mahmoud, 2017), and the 
potential of ML methods has been demonstrated in 
this area.  

These methods can identify potential security 
breaches by examining trends and anomalies 
indicated by previous learning from the vast amount 
of data available from CPSs and IoT devices. ML 
techniques, such as clustering, association, and 
regression, are employed to classify traffic from CPS 
and IoT networks and detect anomalies (Tyagi and 
Sreenath, 2021). Despite the many possible 
advantages provided by ML-based detection and 
classification of threats and anomalies on CPS and 
IoT networks, it remains challenging to obtain the 
correct datasets to train and build effective ML 
models (Shaukat et al., 2020). This can be attributed 
mainly to outdated datasets and the lack of reported 
factual cases of fraud with easily accessible data 
within this domain (Xin et al., 2018). A broader 
discourse on the above-mentioned issues is provided 
in the following sections. 

2.1. IoT  

The IoT is an advanced concept that outlines how 
things, objects, and people can connect and 
communicate with networking technology, both 
presently and in the future. It is typically 
implemented as a system of connected devices 
supplied with sensors, software, and various other 
technologies that allow both independent and 
coordinated communication and work. IoT systems 
increase the ability to monitor, manage, and optimize 
processes and environments in different domains, 
such as smart homes, healthcare, manufacturing, and 
smart cities. However, the continuing developments 
and exponential growth of the IoT present 
considerable concerns with respect to security and 
the identification of intrusions. Mitigating these 
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challenges is crucial to realizing the full advantages 
of the IoT while building and maintaining more 
secure, reliable, and resilient networking 
environments. This section is devoted to describing 
the essential research on securing IoT networks with 
respect to different methods and their efficiency. 

Lai et al. (2024) analyzed two datasets (IoTID20 
and IoT-23) to determine the details of network 
traffic from IoT devices, such as smart homes, 
laptops, and smartphones. The variants of IoTID20 
include a binary dataset that is divided into standard 
and malicious data and a multi-category dataset 
containing normal, DoS, “man in the middle” address 
resolution (MITM ARP) spoofing, Mirai, and scan 
data. The IoT-23 dataset contains data collected from 
devices such as the Amazon Echo, Philips Hue, and 
Somfy Door Lock, and features two types of labels: 
binary and multi-category. The labels were cleaned, 
and classes of fewer than five instances were 
removed. Their study considered the ridge 
regressor, naïve Bayes, multi-layer perceptrons, 
support vector machines (SVMs), and decision trees 
using Bayesian optimization methods. The 
researchers demonstrated that these models were 
effective in detecting most types of cyberattacks in 
an IoT setting and recognizing the pervasive features 
of the network. 

Douiba et al. (2023) presented an improved 
anomaly detection model that combines two ML 
models: gradient boosting and decision trees. This 
was enhanced by the CatBoost open-source 
framework. The developed model was tested on four 
datasets—NSL-KDD, BoT-IoT, IoT-23, and Edge-
IIoT—with a GPU-based performance optimization 
strategy. Their aim was to enhance the correctness, 
precision, and processing time of an IDS and achieve 
an overall accuracy of 99.9% over different metrics. 
Their model addressed the class imbalance problem, 
thus increasing the detection rates of minority 
classes through target statistics and gradient 
boosting.  

The CIDAD dataset was created by Vigoya et al. 
(2023) to address the scarcity of constrained 
application protocol (CoAP)-IoT traffic datasets with 
normal and anomalous cases. Most data were 
preprocessed to replace missing values, extract 
features, and balance categories using the synthetic 
minority oversampling (SMOTE) technique. Fivefold 
cross-validation was then adopted to measure 
classifier performance. The following classifiers 
were considered: Logistic regression, naïve Bayes, 
random forest (RF), AdaBoost, and SVMs. For these 
classifiers, the metrics of accuracy, precision, recall, 
F1 score, and Cohen’s kappa statistic were 
calculated.  

The best performance was observed when the RF 
model was used, and 99% of the labels were correct. 
The precision (99.9%) and F1 score (100%) recall 
results, and the estimated Cohen’s kappa value (.99), 
strongly indicated that the multi-layer perceptron 
was very robust. High predictive power was also 
shown by the logistic regression and SVM 
approaches. The CIDAD dataset was shown to 

produce dependable anomaly detection systems for 
CoAP-IoT environments. 

2.2. Key challenges in IoT 

Many companies frequently encounter Internet-
related difficulties, making it crucial to ascertain the 
integrity and reliability of the IoT systems and 
instruments that they use. Some of the key 
challenges involved in this area are as follows: 
 
• Multiplicity and diversity. The multiplicity and 

diversity of IoT devices present serious security 
risks. IoT ecosystems are often made up of a 
variety of devices with different features, 
constructors, and capabilities, making it difficult to 
implement standardized security protocols 
throughout an ecosystem (Sfar et al., 2018). 

• Constraints on computing resources. The limited 
storage and processing power capacity of many IoT 
devices makes it difficult to implement robust 
security features. Because of these constraints on 
resources, devices may not optimally perform 
authentication, encryption, or other security 
measures, making them vulnerable to attacks (Sha 
et al., 2018). 

• Security communication protocols. IoT systems 
frequently employ protocols that lack inherent 
security features for communication over 
unsecured networks (Omolara et al., 2022). 
Without adequate authentication and integrity 
assurances, IoT data can become susceptible to 
interception, espionage, and manipulation by 
malevolent entities. IoT devices can be physically 
damaged, stolen, or vandalized when placed in 
unmanaged or hostile locations. 

 
The poor availability of recognized safeguards 

across various IoT platforms and ecosystems, 
together with interface concerns, makes it difficult to 
deploy uniform safeguards (Gupta and Quamara, 
2020). Overcoming these obstacles calls for an all-
encompassing strategy that includes organizational, 
technical, and legal measures (Sharma et al., 2023). 
Throughout the entire IoT lifecycle, from product 
configuration and development to deployment, 
functioning, and disposal, it is imperative for 
businesses to prioritize security. This approach 
enables corporations, industry sectors, and security 
agencies to establish standard safety measures that 
facilitate the enforcement of security guidelines, 
protocols, and policies, thereby endorsing the 
dependable and secure application of IoT 
technologies. 

2.3. Security of IoT 

Conventional IoT security measures comprise an 
array of methods and mechanisms aimed at 
safeguarding networks, devices, and data against 
security threats. A pivotal tactic is network 
segmentation, which allocates IoT devices to distinct 
network sections or virtual local area networks 



Maha M. Althobaiti/International Journal of Advanced and Applied Sciences, 12(6) 2025, Pages: 92-105 

95 

 

(Kahmann et al., 2023). This compartmentalization 
mitigates the risk of unauthorized access to critical 
assets and networks by curtailing security breaches 
within isolated networks, thereby diminishing 
repercussions. Encryption is indispensable for IoT 
security because it secures the confidentiality and 
integrity of data transmitted between IoT devices 
and servers or gateways. Protocols such as 
Transport Layer Security and Datagram Transport 
Layer Security are employed to encrypt 
communication channels, thwarting adversaries 
from intercepting or tampering with data exchange 
(Baskaran et al., 2019). Verifying the identity of 
people and devices through IoT systems requires the 
use of authentication methods and login controls. To 
ensure that only authorized organizations can access 
IoT resources, robust security methods, such as 
digital signatures, login details, and fingerprints, are 
used (Yang et al., 2021). To reduce the likelihood of 
unwanted actions, access control methods, such as 
role-based access control and access lists, aid in 
restricting users’ access rights based on predefined 
roles or permissions (Malik et al., 2020).  

IDSs, intrusion prevention systems (IPSs), and 
firewalls are integral parts of IoT security 
architecture. Traffic entering and exiting IoT 
networks is typically monitored and filtered by 
firewalls to prevent fraudulent and unauthorized 
login attempts. Note that IDSs and IPSs are often 
designed to work in tandem with firewalls (Dorado 
et al., 2021; Kizza, 2024; Zhou et al., 2019). To 
reduce IoT vulnerabilities, device-hardening 
measures must be implemented. Organizations can 
reduce the scale of attacks and improve security 
measures for IoT installations by implementing 
security best practices, such as prohibiting 
redundant services, changing default passwords, and 
installing security patches and updates (Pütz et al., 
2023).  

Physical security measures, especially in open or 
uncontrolled locations, can also protect IoT 
equipment from theft, unauthorized access, and 
physical interference. Examples of such precautions 
include secure packaging, tamper-evident seals, and 
access control (Pütz et al., 2023). IoT network 
visibility can also be implemented via monitoring 
and recording systems that can help track and 
document events and activities (Kaur et al., 2022). 
Educational initiatives can inform users about 
potential security risks and how to mitigate them, 
while security policies can provide valid usage rules, 
incident response protocols, and security best 
practices (Cram et al., 2017). By putting these 
traditional IoT security measures in place, 
businesses can mitigate security risks and protect 
their IoT facilities from various attacks and 
vulnerabilities. The rest of this section focuses on 
research related to ML approaches to improving IoT 
security. 

Altulaihan et al. (2024) presented an IDS to 
strengthen the security of IoT networks from DoS 
attacks using ML methods. They used the IoTID20 
dataset, which consisted of 59,391 DoS attack 

instances, 585,710 anomaly instances, and 40,073 
normal instances across 386 features. In the 
preprocessing stage, they performed some 
computations to remove null values and biased 
features, and encoding was used to define 
categorical labels. The database was divided into 
training and test sets, and feature selection was 
performed using correlation-based feature selection 
and a genetic algorithm. They benchmarked 
classifiers, such as decision trees, RFs, k-nearest 
neighbors, and SVMs, and identified that the decision 
tree and RF classifiers using the features selected by 
the genetic algorithm yielded the highest accuracy. 
This work discussed the difficulties in designing a 
lightweight IDS for IoT-constrained environments; 
nevertheless, the proposed IDS demonstrated a high 
level of accuracy in detecting DoS attacks, enhancing 
IoT network security. 

Alangari (2024) presented a hybrid optimization 
approach called AHGFFA to protect mobile ad hoc 
network-secured IoT sensor networks from 
blackhole and grayhole attacks. This study modeled 
various attack scenarios and network topologies 
using multiple metrics, such as packet delivery ratio, 
throughput, delay, and energy consumption, based 
on simulated data gathered from the ns-3 
environment.  

The dataset contained no missing values and was 
divided into training and test sets. AHGFFA used a 
genetic algorithm and the firefly algorithm for 
routing optimization and achieved a detection rate of 
98% for malicious nodes, obtaining considerable 
improvements in metrics, such as packet delivery 
ratio and throughput. Although it performed well in 
simulations, the actual application of this model 
might face difficulties due to changes in conditions 
inside an actual network and the need for 
calculations to be done in real time. This research 
used hybrid ML with unsupervised techniques for 
sensor network security in the IoT. 

Khan and Alkhathami (2024) discussed how the 
security of IoT-based healthcare systems could be 
improved using ML techniques. The authors used the 
publicly available Canadian Institute for 
Cybersecurity (CIC) IoT dataset, which contains 33 
kinds of IoT attacks categorized into seven main 
categories. The dataset was preprocessed to balance 
the class representation using the SMOTE algorithm, 
ensuring non-biased supervised learning. 
Classification was made using RF, adaptive boosting, 
logistic regression, perceptron, and deep neural 
network methods. The findings revealed that an RF 
approach performed optimally, with an approximate 
accuracy of 99.55% for both binary and multiclass 
classifications.  

This research also found that feature reduction 
had to be done to avoid highly correlated features 
and hence avoid overfitting and to help improve 
training time so that good detection would be 
possible in real time. The method achieved 
substantial improvements in accuracy, precision, 
recall, and F1 score, indicating good anomaly 
detection for IoT-based healthcare applications. 
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2.4. CPSs in IoT 

As previously described, the convergence of CPSs 
and the IoT has led to new security problems for 
physical and cyber subsystems (Djenna et al., 2021; 
Zhou et al., 2019). For example, IoT botnets can 
compromise smart home gadgets, and ransomware 
attacks can target enterprise control systems, 
drawing attention to the potential consequences of 
privacy breaches in the context of CPS and IoT 
(Makhdoom et al., 2018). The interconnected 
elements in CPSs and the IoT can be affected by 
vulnerabilities in the same area, thereby increasing 
the potential impact of security incidents 
(Makhdoom et al., 2018; Lesch et al., 2023). For 
example, an online attack on a smart grid could lead 
to a power outage for critical infrastructure, with 
dire consequences for both the economy and public 
safety (Kimani et al., 2019). The acquisition of IoT 
devices and the sharing of sensitive data also raise 
concerns about privacy and privacy breaches, 
especially in industries that generate a significant 
amount of sensitive data, such as healthcare and 
smart cities (Lesch et al., 2023). The rest of this 
section focuses on CPS research of relevance to the 
issues raised in this article. 

In a recent study by Rodriguez et al. (2021), an 
innovative architecture called intelligent 
architecture for cyber-physical systems (IA-CPS) was 
proposed to improve CPS management. The IA-CPS 
architecture is based on two main frameworks: a 
service-oriented framework and an event-driven 
framework. They cooperate closely to manage the 
underlying level of complexity in large-scale and 
distributed CPS environments. This study presented 
practical applications using video surveillance and 
the monitoring of energy consumption. For video 
surveillance, the IA-CPS can cope with images from 
50 cameras simultaneously, performing real-time 
analysis and generating alerts. In energy 
management, the system processed data from 1,000 
intelligent meters to optimize consumption patterns, 
reducing energy consumption by 25%. The IA-CPS 
model also reduced its response time by 30% 
through the use of real-time processing and an 
intelligent decision framework. Such enhancements 
were made possible through the integration of 
complex event processing and microservices, which 
offer great flexibility, scalability, and dynamic 
adaptability to changing conditions. 

Djenna et al. (2021) investigated in detail the 
synergy of CPS and the IoT because of their common 
characteristics of interoperability, scalability, and 
the ability to interact in real time. According to the 
authors, CPSs should be able to perform complex 
tasks because they integrate computation, 
networking, and physical processes. For example, an 
advanced CPS can manage up to 1,000 events in one 
second, which is important for health applications in 
which real-time monitoring and response are crucial. 
In innovative grid applications, energy management 
via CPS resulted in up to a 30% reduction in energy 
wastage. Djenna et al. (2021) also mentioned 

intelligent cities in which the IoT controls 
infrastructure elements, such as traffic lights. A 
reduction in average travel time was 20%, and 
carbon emissions were considerably reduced. These 
examples reveal how the integration of physical and 
digital environments through CPS and IoT is 
transformational in nature. 

Tushkanova et al. (2023) reviewed detection 
techniques that can be used for cyberattacks and 
anomalies in CPSs, emphasizing early detection to 
prevent drastic consequences. The authors noted 
that the effectiveness of an ML model in detecting 
anomalies depended on the quality and availability 
of an appropriate dataset. Many researchers have 
been forced to create synthetic datasets because 
obtaining real-world CPS data is challenging, as these 
data are typically private and confidential due to 
security issues. A problem lies in the completeness 
and validity of such synthetic datasets. The 
researchers stated that only one of the three datasets 
they considered in their study was adequate for 
intrusion detection tasks because it incorporated 
both network and sensor data, which was far 
superior to the standard means of anomaly 
detection. The researchers also touched on available 
methods for evaluating ML technique efficiency, 
suggesting a need for further research in this area. 

An advanced anomaly detection technique for 
CPSs was proposed by Ramachandran et al. (2023), 
which fused Aquila optimization and ML. Their 
framework detected abnormal behaviors within CPS 
environments in what they considered the most 
efficient way. The framework preprocesses the 
network data into a compatible format and applies 
an enhanced Aquila optimization algorithm to select 
features. In addition, the model integrates an 
adaptive neuro-fuzzy inference (ANFIS) system and 
a Chimp optimization algorithm to improve anomaly 
detection. The chimp optimization algorithm 
modulates the membership functions underlying the 
ANFIS method to optimize the overall detection 
process. The performance of the proposed model 
was tested using benchmark datasets, achieving an 
accuracy of 99.37% and outperforming recent 
models in accuracy and efficiency. This work 
highlighted the importance of combining 
optimization algorithms with ML for anomaly 
detection in CPSs, specifically because of the 
problems of data complexity and real-time 
processing. 

Hyder et al. (2023) revealed the significance of a 
realistic and accurate dataset when designing an ML-
based anomaly detection system (ADS) for smart 
grids. Their co-simulation intelligent grid platform 
performed simulations based on realistic datasets 
that presented the subject matter of the threat 
landscape with a rich spectrum of potential cyber-
events. A dataset was required, and once this was 
developed, it was employed to build and evaluate a 
specific ADS. Although the AI performed well on the 
specific datasets that were used to train it, it also 
worked when trained on a random, statistically 
diverse set of data on which it had not been trained. 
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This paper helped establish a baseline cyber-
resilient middleware architecture for constructing 
proof-of-concept cybersecurity applications and CPS 
datasets. The generation of high-fidelity datasets was 
found to be important in improving the robustness 
and precision of robust ML-based anomaly detection 
for CPSs, such as power grids. 

Hao et al. (2021) suggested a hybrid statistical 
ML model to further advance real-time anomaly 
detection in industry control systems (ICSs). The 
proposed model integrates a seasonal autoregressive 
integrated moving average (SARIMA) approach with 
long short-term memory to obtain high precision 
and low false omission rates in abnormal traffic 
pattern detection. ICS network traffic was described, 
and the model successfully detected various anomaly 
events, including cyberattacks, malicious behaviors, 
and network anomalies. Experiments in realistic ICS 
CPS testbeds have shown that the proposed hybrid 
model’s detection efficiency was over 95%, and it 
had a lower computational requirement than other 
models, revealing that the integration of statistical 
learning methods with algorithmic learning can 
achieve high performance in real-life anomaly 
detection in ICS systems. 

Yang et al. (2023) proposed an advanced model 
for industrial CPS traffic outlier detection that has 
three critical parts: A data preprocessing model, an 
unsupervised word segmentation model, and an 
unsupervised classification model based on an 
autoencoder. The data preprocessing model can 
efficiently extract those packets that belong to the 
Transmission Control Protocol (TCP) or User 
Datagram Protocol (UDP) and transform the content 
of the packets into a series of alphanumeric 
characters. For word segmentation, the model uses 
long short-term memory, and the probabilities of the 
combination of words ensure adequate accuracy 
among the relationships of words with strong 
segmentations. This classification model also 
integrates a one-dimensional convolutional neural 
network (CNN) with bidirectional encoder 
representations from transformers (BERT) language 
model, and it fully utilizes the short- and long-term 
dependences in the data. In addition, an accuracy of 
95% was achieved by the developed model, which 
demonstrated that it identified cyberphysical 
attacks. It also met real-time detection criteria. 

Elhanashi et al. (2023) thoroughly studied the 
integration of ML to improve CPS security and to 
accurately detect network intrusions. The guidelines 
for anomaly detection presented in their paper 
included a method of comparative evaluation for 
multiple attack scenarios from the CSE-CIC-IDS2018 
dataset. This method can identify anomalies in 
network traffic patterns as determined by RF, 
Gaussian naïve Bayes, and multilayer perceptrons. In 
this way, they demonstrated the use of such applied 
techniques to sustain the security and integrity of 
CPSs. Thus, it is possible to design a method that can 
perform data preprocessing and correlation-based 
filtering of complex and imbalanced data to manage 
computational time and dimensionality reduction, 

ultimately increasing the speed and accuracy of 
anomaly detection in CPSs. 

2.5. ML-based intrusion detection 

One effective way to detect intrusions in IoT/CPS 
environments is to employ ML techniques, which 
work by extracting knowledge from data to look for 
trends and identify anomalies that could be signs of 
security breaches (Saranya et al., 2020). The growing 
popularity of ML in intrusion detection can be 
ascribed to its ability to analyze vast amounts of data 
and effect mitigation actions in response to newly 
identified threats. To train ML models on the basic 
patterns and attributes of security threats, datasets 
of cases labeled as normal and malicious behavior 
can be used. With available and reliable datasets, ML 
techniques, specifically supervised and unsupervised 
learning techniques, can be easily deployed to train 
and build models for intrusion detection. Two 
popular ML approaches for intrusion detection are 
SVMs and neural networks (Kirubakaran et al., 
2024). 

ML approaches can also detect anomalies and 
trends in unclassified or unlabeled datasets without 
the need for disaggregated data (Selmy et al., 2024). 
By categorizing data points based on comparisons, 
unsupervised ML techniques, such as k-means, can 
identify deviations from typical behaviors that could 
be signs of security breaches and require further 
research (Gadal et al., 2022). By establishing a 
relationship between network environments and the 
actions occurring in them, IDSs can also learn the 
best ways to deal with security risks via 
reinforcement learning (a broad class of methods in 
ML) (Shaukat et al., 2020; Rodriguez et al., 2021). 
Reinforcement learning algorithms assimilate 
feedback from their actions to incrementally 
enhance their efficacy, such that in dynamic and 
changing environments, they can continuously 
adjust and improve IDSs, increasing the effectiveness 
of defensive barriers (Shaukat et al., 2020; Rodriguez 
et al., 2021; Nguyen and Reddi, 2021).  

Bertoli et al. (2021) provided a general outline of 
IDSs in CPSs using ML techniques. Their study 
focused on enhancing the precision of IDSs, and the 
authors detailed a complete end-to-end system that 
included data collection, feature extraction, and 
classification processes. Supervised learning 
algorithms were trained on labeled datasets to 
understand the patterns relevant to CPS intrusions. 
Data preprocessing techniques, data normalization, 
and feature selection were also considered to 
improve the performance of the ML models. The 
performance of this framework in detecting CPS 
intrusions was found to be robust in different 
network environments and to significantly improve 
accuracy compared with traditional frameworks. 
Finally, the results of real-world implementations in 
CPS scenarios were also reported, showing the 
ability of the proposed framework to scale for 
solving real-world problems. Its F1 score was .96, 
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indicating that it has the potential for effective 
intrusion detection and mitigation in CPSs. 

Santos et al. (2023) evaluated several ML 
techniques for intrusion detection in CPSs. 
Supervised and unsupervised learning methods 
were compared to determine the one most suitable 
for CPS security. Different algorithms, such as 
decision trees, SVMs, and clustering techniques, 
were described. The evaluation parameters included 
detection rate, false positive rate, and computational 
efficiency. Overall, it was found that supervised 
learning techniques produce better accuracy; 
however, unsupervised methods can be applied in 
scenarios in which there is little or few labeled data. 
The authors reported that a few ML models achieved 
an accuracy of more than 90% for intrusion 
detection in CPS. In their concluding remarks, they 
proposed a hybrid model in which supervised and 
unsupervised learning are employed to enrich 
system-wide security. 

Nour et al. (2023) explored transfer learning to 
optimize intrusion detection in industrial CPSs. They 
proposed a method for leveraging pretrained ML 
models to improve detection performance in a new 
environment with very limited labeled data. The idea 
was to reduce training time and increase the 
accuracy of IDSs. Their system performed transfer 
learning on different datasets very well, improving 
the detection rate and reducing the number of false 
positives. The authors reported that the fine-tuned 
models achieved accuracy rates of more than 95%, 
demonstrating the effectiveness of transfer learning 
in adapting to the disparate contexts of CPSs. Finally, 
the authors mentioned the difficulty of domain 
adaptation and the importance of correctly selecting 
a pretrained model for transfer learning 
optimization. 

Alqaralleh et al. (2022) presented an optimized 
ML-based IDS for CPSs. In this work, the main 
emphasis was on parameter fine-tuning of the 
algorithms to increase detection accuracy and 
reduce false positives. Some of the work was on 
neural networks and ensemble methods that were 
presented to indicate the importance of parameter 
optimization in ML model performance. Extensive 
experiments on their dataset revealed that the 
proposed optimizations enhanced the detection rate. 
The accuracy rates were greater than 92%, and the 
optimized IDS could secure CPS environments. 
Finally, this study clarified the computational 
challenges in realizing ML models in real-time CPS 
applications and offered solutions. 

Colelli et al. (2021) designed an anomaly-based 
IDS to add an enriched security layer to CPS using 
ML approaches. They considered the problem of 
discovering abnormal patterns in network traffic and 
system behavior that might indicate a breach. Their 
proposed IDS uses an extensive range of 
unsupervised learning techniques with clustering 
and anomaly detection algorithms to recognize 
abnormal behavior. They argued that the system 
should be adaptive to the dynamic nature of CPS and 
efficiently detect zero-day attacks. The authors 

reported that the detection accuracy acquired by the 
proposed anomaly-based IDS was very high and that 
its false alarm rate was reduced. They also provided 
detailed performance metrics and listed the 
challenges of implementing the IDS in a CPS. 

Despite extensive research on intrusion detection 
in CPS and IoT environments, several challenges 
remain unaddressed. Most existing IDS models are 
computationally expensive, making them unsuitable 
for resource-constrained IoT devices. Furthermore, 
detecting zero-day attacks remains a critical issue, as 
traditional models rely on predefined signatures. 
Anomaly-based IDS approaches also tend to 
generate high false positive rates, reducing their 
practical applicability. Additionally, scaling IDS 
solutions across large IoT networks poses challenges 
in terms of data processing and resource efficiency. 
Finally, the integration of blockchain technology for 
secure IDS logging and decentralized attack 
mitigation remains unexplored. Addressing these 
gaps can lead to more effective, efficient, and 
scalable IDS solutions for CPS and IoT networks. 

3. Methodology 

The research approach or methodology of this 
study focused on developing an ML-based IDS for 
CPSs. The initial phase in creating the proposed 
framework involved gathering data from online 
repositories and employing data extraction 
techniques to isolate critical feature data. 
Subsequently, ML algorithms (specifically, stochastic 
gradient descent [SGD] and RF) were used to predict 
attacks on the CPS. The proposed framework, shown 
in Fig. 1, is outlined in the following subsections. 

 

 

Data Collection

Feature Extraction

ML-Model Training

Intrusion
Detection

Evaluation

 
Fig. 1: Proposed framework 
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3.1. Data collection 

This research study employed exploratory data 
analysis. The primary goal was to collect a 
substantial volume of numerical network traffic data 
for ML model development. It was important to 
ensure completeness in the data to aid in achieving 
high prediction model accuracy. The initial step 
involved data collection from Kaggle 
(www.kaggle.com), which is a large platform that 
hosts millions of datasets. The selected dataset 
(CICIDS) consisted of CPS data and comprised 
283,743 records and 79 features. The variable types 
included float (24 bit), object, and int 64. The dataset 
encoded variables as objects, with labels denoting 
the classification (normal data traffic or anomalous 
attack patterns). Various types of network traffic 
were collected, including user activity, malicious 
behavior, and attack patterns. The details of the 

dataset are listed in Table 1. Fig. 2 shows the cyber-
physical attacks in the IoT security system dataset. 
There were 14 types of crucial cybersecurity attacks 
in the dataset. The DoS Hulk attack was the most 
common, with 105 instances, and the second-most 
common was the PortScan attack, with 104.5 
instances. The least frequent attacks in the dataset 
were Heartbleed attacks. 

Fig. 3 shows the classification of the cyberattack 
data: Blue indicates benign activities, and orange 
signifies cyberattacks. According to the graph, the 
attack range is 0.50, and the benign range is 2.0. This 
balance allowed for a good distinction between 
benign and malicious activities within the dataset. 
Utilizing the dataset and its categorizations aided in 
evaluating the performance of the SGD and RF 
models, subsequently improving cybersecurity 
measures in IoT environments, as with the 
investigations carried out in this research. 

 

 
Fig. 2: Distribution of attacks in the dataset 

 

 
Fig. 3: Classification of the data 

 
Table 1: Dataset details 

 a b c d e f g h i j 
0 54865 3 2 0 12 0 6 6 6.0 0.0 
1 55054 109 1 1 6 6 6 6 6.0 0.0 
2 55055 52 1 1 6 6 6 6 6.0 0.0 
3 46236 34 1 1 6 6 6 6 6.0 0.0 
4 54863 3 2 0 12 0 6 6 6.0 0.0 

a: Destination port; b: Flow duration; c: Total Fwd. packets; d: Total backward packets; e: Total length of Fwd. packets; f: Total length of Bwd. packets; g: Fwd. 
packet length max; h: Fwd. packet length min; i: Fwd. packet length mean; j: Fwd. packet length Std 

 

3.2. Data pre-processing and feature extraction 

Effective analysis and operation require high-
quality data. Thus, it was necessary to process the 
collected information and extract the relevant 
features before it was used for intrusion detection. 
This phase involved a series of processes designed to 
clean, develop, and standardize the data, making it 

ready for further analysis. Preprocessing typically 
involves processing missing values, normalizing 
variables, and converting categorical data to 
numerical values in a mixed dataset that includes 
both numerical and categorical variables. Addressing 
the issue of incomplete or missing data is crucial in 
data preparation, as they can adversely affect the 
performance of ML algorithms. Employing 
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techniques such as imputation, in which missing 
values are filled in using estimates derived from 
available data, or opting to discard incomplete 
records based on the severity of data loss, are both 
viable strategies (Burkov, 2019). The normalization 
step is particularly vital for numerical attributes to 
ensure that all variables are on a similar scale. Such 
normalization enhances the uniformity and 
effectiveness of the ML model, preventing any single 
feature from exerting undue influence during the 
training phase. Techniques such as min-max scaling 
and z-score standardization, in which values are 
adjusted by subtracting the mean and dividing by the 
standard deviation, are commonly used data 
normalization methods (Sangodoyin et al., 2021). 

To ensure high-quality input data for the ML 
models, multiple preprocessing steps were applied 
to the dataset: 
 
1. Handling missing values: Any rows with missing 

values were examined. If a feature had more than 
20% missing data, it was removed. For features 
with minor missing values, missing data were 
imputed using the mean (for numerical features) 
or mode (for categorical features). 

2. Encoding categorical variables: The dataset 
included categorical features, such as attack labels. 
These were converted into numerical values using 
one-hot encoding for multiclass labels. 

3. Feature scaling and normalization: Because the 
dataset had features with different numerical 
ranges, min-max scaling was applied to normalize 
the values between 0 and 1 to prevent any bias 
toward larger numerical values. 

4. Feature selection: The dataset contained 
redundant and highly correlated features. Using 
the variance inflation factor (VIF) and Pearson 
correlation, highly correlated features (>.85) were 
removed to reduce multicollinearity and improve 
model performance. 

5. Data augmentation: No artificial data 
augmentation was performed in this study. 
However, since the dataset had an imbalance 
between attack and normal traffic, SMOTE was 
applied to balance the minority attack classes and 
improve the model generalization. 

6. Splitting the dataset: The preprocessed dataset 
was split into 80% training and 20% testing data 
using stratified sampling to ensure that both attack 
and normal traffic instances were proportionally 
represented in both sets. 

 
The implementation code was as follows: 

 
# Step 1: Handle missing values 
# Drop columns with more than 20% missing values 
df.dropna(thresh=len(df) * 0.8, axis=1, inplace=True) 
# Fill remaining missing values with the column mean 
df.fillna(df.mean(), inplace=True) 
 

# Step 2: Encode categorical labels 
from sklearn.preprocessing import LabelEncoder 
df["Label"] = LabelEncoder().fit_transform(df["Label"]) 
 

# Step 3: Normalize numerical features 

from sklearn.preprocessing import MinMaxScaler 
scaler = MinMaxScaler() 
numeric_columns = df.select_dtypes(include=['float64', 
'int64']).columns 
df[numeric_columns] = 
scaler.fit_transform(df[numeric_columns]) 
 

# Step 4: Handle class imbalance using SMOTE 
from imblearn.over_sampling import SMOTE 
X = df.drop(columns=["Label"]) 
y = df["Label"] 
X_resampled, y_resampled = SMOTE().fit_resample(X, y) 
 

# Step 5: Split the dataset into training and testing sets 
(80/20 split) 
from sklearn.model_selection import train_test_split 
X_train, X_test, y_train, y_test = train_test_split( 
    X_resampled, y_resampled, test_size=0.2, 
stratify=y_resampled 
) 

 
These preprocessing steps ensured that the 

dataset was cleaned, balanced, and optimized for the 
ML model training. 

3.3. ML model training 

The process of training predictive models for 
intrusion detection spans several stages, from data 
preparation to evaluating model efficacy. Initially, a 
dataset is processed to scale the numerical features 
and divide the dataset into test and training sets. 
Subsequently, the balance of classes was adjusted to 
ensure an accurate representation of both benign 
and malicious instances. In this study, the data were 
divided into test and training sets using the 
“train_test_split” function in 
“sklearn.model_selection.” Once this process was 
completed, the ML models were trained. To optimize 
performance, the hyperparameters of these 
classifiers, such as minimum sample leaf and depth 
range for the RF classifier and loss function and 
regularization penalty for the SGD classifier, were 
fine-tuned (Pal and Patel, 2020). After training, the 
classification models for both methods were 
evaluated using the test set. Performance metrics, 
including accuracy, were employed to gauge the 
ability of the models to classify normal traffic and 
attack scenarios. 

4. Results and discussion 

In this section, the results from the experiments 
carried out by building the ML models for a typical 
IDS are presented. Specifically, we employed the SGD 
and RF classification models to categorize 
cyberattacks in IoT environments. The accuracy, 
precision, recall, and F1 score metrics of the SDG and 
RF classifiers are presented to indicate the potential 
of ML techniques to enhance IoT security by 
detecting cyberphysical threats. From Table 2, it can 
be seen that the SGD classifier had an accuracy of 
93.6%, a precision of 93.8%, a recall of 92% and an 
F1 score of 96%, indicating that this model was able 
to proficiently classify cyberattacks. 
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Table 2: Performance metrics of SGD and RF classifiers 
Classifier Accuracy Precision Recall F1-score 

SGD 0.936 0.938 0.917 0.960 
RF 0.995 0.995 0.998 0.992 

 

However, the RF classifier outperformed the SGD 
classifier. Specifically, the RF classifier had an 
accuracy of 99.5%, a precision of 99.5%, a recall of 
99.8%, and an F1 score of 99.2%. These performance 
metrics also indicate that the RF classification model 
was able to proficiently classify cyberattacks. 

4.1. Proposed vs. existing IDS approaches 

Traditional IDSs for IoT/CPS environments often 
rely on signature-based or anomaly-based detection 
mechanisms. Signature-based IDSs, while effective 
against known attacks, struggle to detect novel 
threats. Anomaly-based methods, often utilizing 
statistical or heuristic techniques, can generate a 
high rate of false positives. Recent advancements 
have introduced ML-based IDSs, which improve 
adaptability but often require extensive 
computational resources. 

The proposed approach integrated RF and the 
SGD classifier, achieving a balance between high 
detection accuracy and computational efficiency. By 
leveraging feature extraction and data 
preprocessing, our IDS minimizes false positives 
while maintaining high detection rates. This makes it 
particularly suitable for resource-constrained 
IoT/CPS environments, where real-time intrusion 
detection is critical. 

4.2. Performance analysis: Why RF outperformed 
SGD 

The RF model achieved 99% accuracy, 
considerably outperforming the SGD classifier (93%) 
in detecting intrusions in the IoT/CPS environment. 
This performance difference can be attributed to the 
following: 
 
1. Robustness to non-linearity. RF is an ensemble 

learning method that constructs multiple decision 
trees, making it more effective in handling non-
linear decision boundaries in complex intrusion 
detection tasks. In contrast, SGD assumes linear 
separability and performs well when feature 
relationships are mostly linear but struggles with 
complex attack patterns. 

2. Feature importance and handling of high-
dimensional data. RF automatically selects 
important features, reducing the impact of 
irrelevant or noisy data, which are common in 
intrusion datasets. SGD does not perform intrinsic 
feature selection and is more sensitive to 
redundant and noisy features, leading to reduced 
performance. 

3. Handling of imbalanced data. RF is more resilient 
to class imbalance, as it assigns different weights 
to minority classes, improving the detection of 
rare cyber threats. SGD is prone to bias toward 

majority classes, affecting recall and overall 
detection capability. 

4. Stability and generalization. RF’s averaging of 
multiple decision trees prevents overfitting and 
provides stable predictions, even with noisy data. 
SGD updates weights iteratively and is highly 
sensitive to hyperparameters, requiring careful 
tuning to avoid poor generalization. 

5. Practical implications for IDSs. In real-world IDSs, 
low false-positive rates and robust attack 
classification are essential. The high accuracy of RF 
makes it suitable for deployment in resource-
constrained IoT environments in which real-time, 
low-latency detection is required. However, SGD’s 
efficiency and lower computational costs make it a 
good choice when fast, lightweight detection is 
prioritized over slightly higher accuracy. 

4.3. Why not use deep learning instead? 

The computational complexity of deep learning-
based IDS models (i.e., artificial neural networks 
[ANNs]) requires significant processing power, 
making them impractical for real-time IoT security 
applications. With regard to data requirements, 
ANNs need large, labeled datasets for training, 
whereas RF and SGD perform well even with a few 
labeled data. RF provides feature importance 
insights, making it easier for cybersecurity analysts 
to understand the detection logic, unlike deep 
learning models, which act as black boxes. RF was 
chosen because it outperformed SGD in accuracy, 
handled imbalanced data well, and was 
interpretable, making it ideal for CPS security. SGD 
was still valuable for lightweight IDS 
implementations requiring faster detection with 
fewer computational resources. Deep-learning 
models could be explored in future work for IDSs 
with real-time adaptive learning, but their high 
resource requirements limit current practical 
deployment in IoT environments. An overview of the 
comparisons among these techniques is provided in 
Table 3. 

4.4. Statistical validation of classifier 
performance 

To ensure the reported accuracy improvements 
were statistically significant, we conducted 
confidence interval analysis and hypothesis testing 
to compare the RF and SGD classifiers. 

4.4.1. Confidence interval for accuracy 

A 95% confidence interval (CI) provides a range 
within which the true accuracy of the model is 
expected to lie. The formula for a CI is as follows: 
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CI = 𝑝^ ± 𝑍 √𝑝(1 − 𝑝)/𝑛 
 

where, p^ is the accuracy of the model, Z is 1.96 (for 
a 95% CI), and n is the number of test samples. 

Using this method, the RF accuracy was 99.5%, 
and its 95% confidence interval was [99.3%, 99.8%]. 

The SGD accuracy was 93.6%, and its 95% 
confidence interval was [92.8%, 94.4%]. The non-
overlapping confidence intervals indicate that the 
difference in accuracy was statistically significant, 
supporting the claim that RF outperformed SGD. 

 

Table 3: Comparison of the described ML models and a deep-learning approach 
Model Advantages Disadvantages 

RF classifier 
High accuracy (99%), robust to noise, interpretable, and low 

tuning effort 
Slower training for large datasets and memory intensive 

SGD 
classifier 

Fast training, works well with sparse data, and low memory 
usage 

Lower accuracy (93%), sensitive to hyperparameters, and 
struggles with complex data 

Deep 
learning 

Can learn complex patterns, adaptive to dynamic attacks, and 
effective for large-scale IDSs 

Computationally expensive, requires large labeled datasets, and 
risks overfitting 

 

4.4.2. Hypothesis testing (p-value calculation) 

To formally compare the RF and SGD models, we 
used the hypothesis test for a difference of 
proportions. The null and alternative hypotheses 
were as follows: 
 
H0: Accuracy (RF)= Accuracy (SGD) 
Ha: Accuracy (RF)> Accuracy (SGD) 
 

Using a z-test to compare the proportions, we 
computed the p-value to measure the likelihood that 
the observed difference in accuracy occurred by 
chance. A p-value ≤.05 would indicate a significant 
difference (thus, we would reject H0). A p-value >.05 
would indicate no significant difference (thus, we 
would fail to reject H0). The p-value obtained was 
<.001, confirming that the accuracy of the RF model 
was significantly higher than the accuracy of the SGD 
model. 

4.5. Real-world challenges and future scalability 
improvements 

4.5.1. Deployment challenges in real-world IDSs 

While the proposed IDS achieved high accuracy 
and strong detection capabilities, deploying it in 
real-world IoT/CPS environments poses several 
challenges: 
 
1. Computational constraints: Many IoT devices have 

limited processing power and memory, making it 
difficult to run computationally expensive models, 
such as RF. Edge computing solutions may be 
required to balance performance and resource 
efficiency. 

2. Many false positives in dynamic environments: 
While RF offers high accuracy, IDS solutions 
deployed in dynamic, real-time systems need to 
minimize false positives, which can lead to 
unnecessary alerts and system slowdowns. An 
adaptive threshold tuning mechanism can help 
refine detection sensitivity. 

3. Data imbalance and evolving threats: New cyber 
threats continuously emerge, requiring IDS models 
to be adapted and updated in real time. A static ML 
model might struggle to detect zero-day attacks. 
Integrating online learning techniques or 
periodically retraining models can help. 

4. Scalability issues in large-scale networks: When 
deployed across multiple IoT devices and CPS 
networks, managing data collection and 
processing the data efficiently becomes a 
challenge. Implementing a distributed IDS 
architecture in which models run on edge devices 
and communicate with a central system can 
improve scalability. 

4.5.2. Future improvements for scalability 

To enhance the proposed IDS for large-scale, real-
world deployment, the following improvements can 
be considered: 
 
1. Lightweight model optimization: Deploying 

compressed versions of RF (e.g., using model 
pruning or knowledge distillation) can reduce 
computational overhead. Implementing ensemble 
learning with simpler models (e.g., decision trees + 
naïve Bayes) may offer a balance between accuracy 
and efficiency. 

2. Integration with edge computing: Running an IDS 
on edge nodes rather than centralized cloud 
servers can reduce latency and allow real-time 
threat detection. Edge-based feature extraction can 
reduce the amount of data sent for processing, 
saving bandwidth and improving response time. 

3. Adaptive learning for zero-day attack detection: 
Implementing semi-supervised learning or 
reinforcement learning techniques can help an IDS 
detect evolving attack patterns. A feedback loop 
from human analysts can continuously fine-tune 
detection thresholds and improve accuracy. 

4. Blockchain-based IDS for trust and security: Using 
blockchain technology to secure IDS logs and 
communications can prevent tampering and 
ensure data integrity. A decentralized approach 
can enhance the trustworthiness of intrusion 
reports and attack mitigation strategies. 

5. Conclusion 

Leveraging accessible open-source data, ML 
models (i.e., RF and SGD classifiers) were deployed 
in typical practical scenarios to illustrate the 
substantial advantages of detecting security 
infractions in IoT/CPS environments. The 
methodology adopted involved standard ML 
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procedures for the handling of missing entries and 
normalization of the variables during the 
preprocessing stage, followed by the training of the 
ML models using the collected data. The SGD 
classifier was effective, identifying attack scenarios 
with a 93.6% accuracy rate, and it had high 
precision, recall, and F1 scores. However, the RF 
classifier surpassed the SGD model, having better 
results in terms of precision, recall, and F1 scores, 
and a higher accuracy rate of 99.5%. This revealed 
the RF model’s exceptional potential in accurately 
classifying cyberattacks while keeping false positives 
and negatives to a minimum, while protecting 
IoT/CPS environments. The performance analysis 
highlighted that SGD was computationally efficient 
but struggled with class imbalance and non-linearity, 
making RF the preferred choice for high-accuracy 
intrusion detection. Additionally, statistical 
validation using confidence interval analysis and 
hypothesis testing (p<.001) confirmed the statistical 
significance of the RF model’s higher accuracy. The 
comparative analysis further highlighted the RF 
model’s superiority in terms of its reliability and 
effectiveness in detecting breaches within IoT/CPS 
security frameworks. To further enhance security 
robustness in IoT/CPS environments, additional 
experimentation and assessments may be necessary 
to investigate other essential factors that affect 
model performance and to refine the proposed 
intrusion detection architecture presented in this 
work. 
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