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This study presents PhageVir, an enhanced computational model developed 
to predict Phage Virion Proteins (PVPs), which are essential for 
bacteriophage infection and replication. PhageVir integrates advanced 
feature selection methods, including the Position Relative Incidence Matrix 
(PRIM) and the Reverse Position Relative Incidence Matrix (RPRIM), to 
effectively capture key sequence features and positional dependencies within 
protein sequences. Several machine learning and deep learning algorithms 
were employed, including LightGBM, Random Forest, Convolutional Neural 
Network (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit 
(GRU), Recurrent Neural Network (RNN), and Artificial Neural Network 
(ANN), to classify PVPs based on sequential data. Model performance was 
evaluated through independent set testing, self-consistency testing, and 
cross-validation, using metrics such as accuracy (ACC), specificity (Sp), 
sensitivity (SN), Z-score, and Matthews correlation coefficient (MCC). The 
CNN model demonstrated strong performance in cross-validation, achieving 
an accuracy of 0.833, sensitivity of 0.832, specificity of 0.834, a correlation 
coefficient of 0.665, an AUC score of 0.927, and a Z-score of 1.37. The results 
confirm the effectiveness of the proposed computational approach for 
accurate PVP classification. Beyond its predictive power, PhageVir offers 
valuable biological insights into phage infection mechanisms, supporting 
advancements in phage therapy and antibacterial treatments.  
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1. Introduction 

*Bacterial infections remain a major global health 
concern, contributing significantly to morbidity and 
mortality. The increasing prevalence of antibiotic-
resistant bacteria has necessitated the exploration of 
alternative therapeutic approaches. Bacteriophages 
(phages), viruses that specifically infect and replicate 
within bacterial cells, have emerged as a promising 
solution due to their host specificity and potential to 
target antibiotic-resistant strains (Yang et al., 2020). 
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Unlike broad-spectrum antibiotics, phages 
selectively target bacterial hosts, minimizing off-
target effects and microbiome disruption. Phages 
possess a distinctive structure comprising a nucleic 
acid core enclosed within a protein capsid. Among 
these proteins, phage virion proteins (PVPs) play a 
crucial role in host recognition, attachment, and 
infection (Emon et al., 2024). Identifying and 
characterizing PVPs is essential for understanding 
phage biology and advancing phage therapy 
applications. Computational methods have gained 
traction for predicting PVPs based on protein 
sequence data, offering high-throughput and cost-
effective alternatives to experimental approaches 
(Gao et al., 2024). Computational approaches for 
predicting PVPs from protein sequence data have 
recently been developed (Ji et al., 2024). These 
methods range from simple sequence-based 
techniques to more complex machine-learning ones. 
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Deep learning methods, including CNN, RNN, and 
GRU, have demonstrated potential in various protein 
prediction applications, including PVP prediction. 
Recently, there has been massive interest in using 
bacteriophages, or phages, as a viable alternative to 
antibiotics for treating bacterial infections (Bajiya et 
al., 2023). Viruses that infect and multiply within 
bacterial cells are known as phages and are very 
specialized to their bacterial hosts (Manavalan et al., 
2018).  

To forecast PVPs, various computational methods 
have been developed, ranging from simple sequence-
based ways to more complicated machine learning 
algorithms. Table 1 illustrates the models. Ru et al. 
(2019) employed a Random Forest classification 
technique with a 10-fold cross-validation and 
obtained a 93.5 percent accuracy. It identified charge 
property as the most significant factor in 
classification. In contrast, Feng et al. (2022) reported 
DeepPVP, a deep learning-based technique for 
finding and classifying PVPs within phage genomes. 
It achieved an accuracy of 90.19 percent on a 10-fold 
cross-validation test. 

Furthermore, Charoenkwan et al. (2020a) 
introduced PV-Pred-SCM, a scoring card system 
(SCM), and a dipeptide composition-based method 
for identifying and characterizing phage virion 
proteins. It obtained a 10-fold cross-validation 
accuracy of 92.52 percent and an MCC score of 0.846. 
In another experiment, Charoenkwan et al. (2020b) 
published Meta-iPVP, which identifies PVPs using 
probabilistic information. It had an 84.6 percent 
cross-validation accuracy. Furthermore, Han et al. 
(2021) introduced iPVP-MCV, an ensemble model for 
precise PVP annotation based on protein sequences. 
It scored an 84.6 percent accuracy in 10-fold cross-
validation. 

Bao et al. (2022) proposed Phage UniR LGBM, a 
model for classifying virion proteins that uses the 
UniRep feature set in conjunction with LightGBM as 
the classification technique. Its accuracy was 89.18% 
when tested with the LGBM model using a 10-fold 
cross-validation. Finally, Ahmad et al. (2022) 
introduced SCORPION, a model for computationally 
classifying phage virion proteins (PVPs) using just 
the primary sequences of proteins. The approach 
employs 13 different feature descriptors from 
various aspects and ten machine learning 
algorithms. It attained an accuracy of 86.8 percent in 
10-fold cross-validation.  

Despite these advancements, existing methods 
exhibit limitations in feature selection, predictive 
performance, and biological interpretability. To 
address these gaps, this study introduces PhageVir, a 
novel computational framework for PVP prediction. 
The key contributions of this work include: 
 
• Construction of a robust feature vector 

incorporating PRIM, RPRIM, AAPIV, RAAPIV, and 
FV descriptors from a curated benchmark dataset. 

• Implementation of dimensionality reduction 
techniques leveraging Hahn, Raw, and central 
statistical moments to enhance model efficiency. 

• Evaluation of multiple deep learning architectures 
(ANN, CNN, RNN, LSTM, GRU) alongside machine 
learning classifiers (RF, LGBM) for PVP prediction. 

• Validation through independent testing, self-
consistency, and cross-validation to ensure model 
robustness. 

• Performance assessment using accuracy, 
specificity, recall, MCC, and AUC scores. 

 
By integrating advanced feature representations 

and diverse predictive models, PhageVir aims to 
enhance PVP prediction accuracy and contribute to 
the development of computational tools for phage-
based therapeutics. 

2. Materials and methods 

The section discusses the methods involved in 
obtaining benchmark datasets, extracting features, 
selecting appropriate models, and evaluating their 
performance. 

2.1. Benchmark dataset collection  

A benchmark dataset was constructed by 
collecting protein sequences from UniProt, yielding 
464 PVP samples and 1,429 non-PVP samples. For 
PVPs, the Organism [OS] field was set to “phage,” and 
the Subcellular location was specified as “virion.” In 
contrast, for non-PVPs, the Organism [OS] field 
remained “phage,” but the Subcellular location was 
explicitly set to NOT “virion.” Only reviewed 
sequences were included in the dataset. All 
sequences were formatted in FASTA, a widely used 
standard for managing protein and DNA sequences 
(Arora et al., 2024). 

To ensure data quality, BioEdit software was 
used to assess sequence integrity. Any sequences of 
low quality or containing ambiguous bases were 
removed. The dataset was then processed with CD-
HIT, a clustering tool that reduces redundancy by 
grouping highly similar sequences, thereby 
producing a streamlined, non-redundant dataset for 
further analysis. 

To improve dataset balance and reduce potential 
biases, an under-sampling technique was applied, 
yielding a final dataset of 393 PVPs and 393 non-
PVPs. This curated dataset was subsequently used to 
train and evaluate multiple machine learning and 
deep learning models, including LightGBM (LGBM), 
Random Forest (RF), Convolutional Neural Networks 
(CNN), Long Short-Term Memory Networks (LSTM), 
Gated Recurrent Units (GRU), Artificial Neural 
Networks (ANN), and Recurrent Neural Networks 
(RNN). Fig. 1 provides an overview of the entire 
preprocessing workflow. 

Biotechnology has made remarkable strides 
thanks to advances in information technology. One of 
the biggest challenges in designing computational 
algorithms is converting primary sequences into a 
collection of fixed-sized numeric features based on 
context-specific functional information. CNN, LSTM, 
and RNN are deep learning algorithms that have 
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been created to handle vector input and have been 
used to evaluate proteomic data. A discrete model 
can transform sequential data into a fixed-sized 
vector while preserving characteristic information 
regarding the sequence (Khan et al., 2021; Perveen 
et al., 2023). 

2.2. Feature formulation 

Feature extraction plays a crucial role in 
analyzing proteomic sequences. Various 
computational techniques, such as position-based 
variation and composition-specific feature 
extraction, help derive meaningful characteristics 
from these sequences. Below, we outline the key 
feature extraction methods and their relevance in 
capturing essential attributes of protein sequences. 

2.2.1. Position relative incidence matrix (PRIM) 

The latent attributes of a protein can be unveiled 
through an analysis of the dispersed sequences of 
amino acid residues within a protein sequence 
(Perveen et al., 2023). The sequence of the 
polypeptide chain embeds within itself 
characteristics important in discerning the attributes 
of the polypeptide chain. A constructed matrix 
examines the positional correlations among all these 
residues to extract meaningful insights and reveal 

patterns formed by the arrangement of residues 
(Suleman et al., 2023). Referred to as PRIM, this 
matrix assumes a dimension of 20x20, 
corresponding to each residue present in the 
arbitrary polypeptide chain. It is derived from the 
relative disposition of residues within a sample 
polypeptide and estimates the positional 
information about a protein. The details are as 
follows: 
 

𝑅𝑃𝑅𝐼𝑀 =

[
 
 
 
 
 
 
𝑅1→1 𝑅1→2 ⋯ 𝑅1→𝑦 ⋯ 𝑅1→20

𝑅2→1 𝑅2→2 ⋯ 𝑅2→𝑦 ⋯ 𝑅2→20

⋮ ⋮ ⋮ ⋮
𝑅𝑥→1 𝑅𝑥→2 ⋯ 𝑅𝑥→𝑦 ⋯ 𝑅𝑖→20

⋮ ⋮ ⋮ ⋮
𝑅𝐴→1 𝑅𝐴→2 ⋯ 𝑅𝐴→𝑦 ⋯ 𝑅𝐴→20]

 
 
 
 
 
 

               (1) 

 

Every element Rij of the matrix denotes the 
accumulation of positional details of the ith residue in 
correlation with the jth ordinal residue (Allehaibi et 
al., 2021). The resultant matrix consists of a total of 
400 coefficients. Statistical moments are then 
computed for dimensionality reduction, as a result, 
400 coefficients of the matrix are reduced to just 30. 
Unlike simple frequency-based methods, PRIM 
preserves the positional dependency of residues, 
which is crucial for understanding protein 
functionality and structure. 

 

464 PVPs / 1429 Non-PVPs

464 PVPs / 1429 Non-PVPs

393 PVPs / 1227 Non-PVPs

Statistical moments

393 PVPs / 393 Non-PVPs

Classification as PVPs /  Non-

PVPs

LGBM
Random 

Forest
ANNRNNLSTM GRU CNN 1D

AAPIV RAPPIV PRIMFV RPRIM

BioEdit  Software

CD-HIT

FEATURE EXTRACTION

FINAL DATASET

Machine and Deep Learning Algorithms

 
Fig. 1: Prediction model of phage virion proteins 

 

2.2.2. Reverse position relative incidence matrix 
(RPRIM) 

The RPRIM method, just like earlier enumeration 
techniques, delves into discovering hidden features 
of homologous peptide sequences (Butt et al., 2022). 
To calculate RPRIM, the reverse of the original 
sequence is used. Below, you can see the RPRIM 
matrix that resulted from this method: 
 

𝑄𝑅𝑃𝑅𝐼𝑀 =

[
 
 
 
 
 
 
𝑄1→1 𝑄1→2 ⋯ 𝑄1→𝑦 ⋯ 𝑄1→20

𝑄2→1 𝑄2→2 ⋯ 𝑄2→𝑦 ⋯ 𝑄2→20

⋮ ⋮ ⋮ ⋮
𝑄𝑥→1 𝑄𝑥→2 ⋯ 𝑄𝑥→𝑦 ⋯ 𝑄𝑖→20

⋮ ⋮ ⋮ ⋮
𝑄𝐴→1 𝑄𝐴→2 ⋯ 𝑄𝐴→𝑦 ⋯ 𝑄𝐴→20]

 
 
 
 
 
 

            (2) 

 
The RPRIM matrix, like the PRIM matrix, consists 

of 400 coefficients. Both RPRIM and PRIM reduce 
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their feature dimension down to 30 coefficients 
through the use of statistical moments. 

2.2.3. Frequency vector (FV) 

The distribution of residue within the 
polypeptide chain is illustrated through the 
frequency vector. It provides crucial sequential 
information regarding the protein sample. It 
determines how frequently a protein has specified 
residues. Thereby preserving information about the 
sequence's composition and distribution (Alghamdi 
et al., 2021). The FV is represented below: 
 
FV = [𝑓1, 𝑓2, 𝑓3, … , 𝑓20]                                                                   (3) 
 

The frequency vector illustrates the occurrence of 
arbitrary amino acids in a protein sample. It is 
arranged in alphabetical order. Since it holds the 
information of each residue therefore its length is 20. 
Understanding protein composition is critical for 
classification tasks. FV captures sequence diversity 
while being computationally efficient. 

2.2.4. Accumulative absolute position incidence 
vector (AAPIV) 

The frequency vector collects positional statistics 
on amino acid residues within a sequence, 
uncovering indeterminate characteristics linked to 
compositional details. However, it does not offer 
insights into the positional relationships among the 
amino acid residues (Barukab et al., 2022). The 
AAPIV is introduced to overcome this limitation. It 
calculates the relative placement information of 
native amino acids in the following manner: 
 
K = [∀1, ∀2,∀3,

, … , ∀𝑛]                                                                   (4) 

 

The calculation of the ith segment of AAPIV is 
expressed as follows: 
 
∀𝑖= 𝛴𝑛

𝑘=1 𝛽𝑘                                                                                 (5) 
 

The sum of ordinal positions within the primary 
sequence for the ith residue is held by the ith element 
of AAPIV. AAPIV adds positional relevance, essential 
for distinguishing functionally similar sequences 
with different distributions. 

2.2.5. Reverse accumulative absolute position 
incidence vector (RAAPIV) 

RAAPIV is a vector similar to AAPIV but is 
computed using the reverse sequence of the actual 
sequence (Baig et al., 2022). It provides further 
insight into the positional information necessary for 
uncovering hidden properties of sequences. RAAPIV 
complements AAPIV by incorporating directionality 
awareness, improving feature robustness. The 
RAAPIV vector is represented as: 
 
RAAPIV = [𝑛1, 𝑛2,𝑛3,

, … , 𝑛𝑚 ]                                                      (6) 

2.2.6. Statistical moments 

Statistical moments are crucial in converting 
proteomic sequences into a fixed-size vector. Each of 
the moments used represents specific information 
about the characteristics of the data. Enormous work 
has been conducted for translation of data into 
moments of varying distributions such that the 
formed coefficients preserve the semantics of 
original sequential data (Butt et al., 2023). 

The feature vector is formed based on the Hahn, 
central, and raw moments computed from the 
descriptor matrices derived from proteomic data. 
These moments are used as a succinct 
representation of elements that contribute to the 
identification of attributes of the input vector. It is 
well understood among researchers that the 
characterization of multiomic sequences depends on 
the relative positioning and composition of their 
basic components. Therefore, mathematical and 
computational models have emphasized the 
interrelated placement of amino acid residues in 
proteomic sequences to boost the feature vector. 
This aspect ensures a consistent and diligent feature 
vector (Suleman et al., 2022). 

A two-dimensional organization of data is the 
basic requirement for the computation of Hahn 
moments, therefore, arbitrary sequences are 
mapped onto a two-dimensional matrix denoted as 
G', with size k*k. This matrix holds the exact 
information as G but is a two-dimensional 
representation. The ceiling of the square root of n 
determines the value of k. 
 

𝑘 =  ⌈√𝑛⌉                                                                                        (7) 

 

The representation of G' is as follows: 
 

𝐺’ =

[
 
 
 
 
𝐺11 𝐺12 ⋯ 𝐺1𝑛

𝐺21 𝐺22 ⋯ 𝐺2𝑛

⋮ ⋮ ⋮
𝐺𝑚1 𝐺𝑚2 ⋯ 𝐺𝑚𝑛

]
 
 
 
 

                                                    (8) 

 

Calculating statistical moments from the square 
matrix above not only reduces the dimensionality 
but also converts the variable-length sequence into a 
fixed-size representation. As mentioned earlier, this 
study uses raw, Hahn, and central moments. 

The following equation expresses how raw 
moments of order a+b are computed: 
 

𝑊𝑎𝑏 = ∑ ∑ 𝐺𝑒𝑓𝑒
𝑎𝑓𝑏𝑘

𝑓=1
𝑘
𝑒=1                                                          (9) 

 

where, 𝑊𝑎𝑏 is the raw moment of a+b, 𝐺𝑒𝑓 denotes 

the value at the grid cell located at row 𝑒 and column 
𝑓, and k is the size of grid. 

Most of the important information embedded in 
the sequences can be sieved out by using moments 
up to the third order, represented by 𝑊00,𝑊10, 
𝑊01,  𝑊11, 𝑊20, 𝑊02, 𝑊21, 𝑊12, 𝑊03 and 𝑊30. 
Computation of central moments requires the data's 
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centroid (x, y), which can be easily calculated using 
the first three raw moments. The centroid is used: 
 
𝑣𝑎𝑏 = 𝛴𝑛

𝑒=1𝛴
𝑛
𝑓=1 (𝑒 − 𝑥̅)𝑎(𝑓 − 𝑦̅)𝑏𝐺𝑒𝑓                             (10) 

 

where, 𝑥 and 𝑦 represent the coordinates of the 
centroid, 𝐺𝑒𝑓 denotes the value at the grid cell 

located at row 𝑒 and column 𝑓. 
A square grid is employed as input for computing 

Hahn moments. Hahn moments have reversible 
properties, which essentially means inverse Hahn 
moments can be applied to sparely rebuild the 
original data. This reversible property ensures that 
latent information transformed and embedded 
within multiomic sequences stays preserved. 
Ultimately, this characteristic information is blended 
into the feature set. The following equation 
illustrates the computation of Hahn moments: 
 
ℎ𝑛

𝑥,𝑦(𝑝, 𝑄) = (𝑄 + 𝑉 − 1)𝑛(𝑄−1)𝑛 ×

𝛴𝑛
𝑧=0(−1)𝑧 (−𝑛)𝑧(−𝑝)𝑧(2𝑄+𝑥+𝑦−𝑛−1)𝑧

(𝑄+𝑦−1)𝑧(𝑄−1)𝑧

1

𝑧!
                                  (11) 

 

where, ℎ𝑛
𝑥,𝑦(𝑝, 𝑄) Hahn polynomial of order n, 

parameterized by p, Q, and spatial indices x, y.  
Eq. 11 employs the Gamma operator and 

Pochhammer notation, which Akmal and Coulton 
(2020) explained. The coefficients yielded via Hahn 
moments using the above equation are 
characteristically normalized based on the 
coefficient stated in the equation below: 
 
𝐻𝑝𝑞 =

 𝛴𝐺−1
𝑗=0𝛴

𝐺−1
𝑖=0 𝛿𝑝𝑞ℎ

𝑎,𝑏
𝑝(𝑗, 𝑄) ℎ𝑎,𝑏

𝑞 (𝑖, 𝑄),      𝑚, 𝑛 =

0,1,2, … , 𝑄 − 1                                                                      (12) 
 

The features chosen—PRIM, RPRIM, FV, AAPIV, 
RAAPIV, and Statistical Moments—each provide 
complementary insights into protein sequence 
composition, structure, and positional relationships. 
Their combination ensures a robust, multi-
perspective feature representation, crucial for 
accurately characterizing and distinguishing 
proteomic sequences. 

2.3. Machine learning models 

The study included two machine learning models: 
Random Forest and Light Gradient Boosting 
Machine. Each of these models has distinct qualities 
and capabilities and has widespread application in 
various machine learning applications. 

2.3.1. LGBM (light gradient boosting machine) 

Light Gradient Boosting Machine (LGBM) uses a 
supervised learning algorithm built on the gradient 
boosting framework, but each boosting iteration 
employs a different technique for tree construction. 
Using a histogram-based method, LGBM determines 
the optimum split points and can handle massive 
datasets efficiently. It is renowned for its excellent 
accuracy, speed, and capability to handle skewed 
data. The model is depicted in Fig. 2. Additionally, 
the model's performance is enhanced through fine-
tuning various hyperparameters, including learning 
rate, number of estimators, max depth, and 
regularization parameters. These hyperparameters, 
detailed in Table 1, allow for improved optimization 
and better predictive accuracy. 

 

Cannot Expand

Expand

Leaf wise tree Expansion in LGBM

    

    

 
Fig. 2: LGBM model used in this study 

 
Table 1: Hyperparameters used for the LGBM model 

Hyperparameter Description Value 
Learning rate Controls the step size at each iteration 0.05 

Number of estimators Number of boosting rounds 1000 
Max depth Maximum depth of each tree -1 (unlimited) 

Min data in leaf Minimum number of data points in a leaf node 20 
Feature fraction Fraction of features used per iteration 0.8 
Bagging fraction Fraction of data used for training each tree 0.8 

Lambda L1 L1 regularization parameter 0.1 
Lambda L2 L2 regularization parameter 0.1 

Boosting type Type of boosting used gbdt 
Objective Loss function binary 
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2.3.2. Random forest 

Random Forest (RF) is a widely used ensemble 
learning method based on decision trees. It trains 
numerous decision trees on bootstrap data samples 
and aggregates their predictions. It yields 
remarkable accuracy and resists overfitting 
(Alzahrani et al., 2021). It also includes randomness 
factors in the way the trees are built, such as feature 
sampling and bootstrap sampling, which can further 
increase the diversity of the trees and reduce 
overfitting. Hyperparameters are shown in Table 2. 
Random Forest is a popular solution for many 
machine learning problems, particularly those 
involving high-dimensional data. Fig. 3 depicts the 
model. 

2.3.3. Deep learning 

CNN1D, LSTM, RNN, GRU, and ANN were the deep 
learning algorithms employed for PVP prediction. All 

models were built with the Keras framework with 
TensorFlow as a backend. Each model has a distinct 
architecture built particularly for different kinds of 
data and applications.  

2.3.4. CNNID  

The CNN1D model is a famous sequential data 
processing architecture. This study used a CNN1D 
model with one convolutional layer, a max-pooling 
layer, and a fully connected layer. A batch size of 64 
and 150 epochs was used during the training phase. 

The Rectified Linear Unit (ReLu) activation 
function was used in the hidden layer to incorporate 
non-linearity and improve the model's 
representative capability. The output layer was 
furnished with a sigmoid activation function because 
it is most appropriate for the binary classification 
problem. The hyperparameters are shown in Table 
3. 

 
Table 2: Hyperparameters used for the random forest model 

Hyperparameter Description Value 
Number of estimators Number of trees in the forest 100 

Max depth Maximum depth of each tree None 
Min samples split Minimum samples required to split a node 2 
Min samples leaf Minimum samples required at a leaf node 1 

Max features Number of features considered for the best split SQRT 
Bootstrap Whether bootstrap samples are used when building trees True 
Criterion Function to measure the quality of a split Gini 

 
Data Set

Decision Tree -1
Decision Tree -2 Decision Tree -N

Result -1 Result -2 Result -N

Majority 

Voting

Final 

Result
 

Fig. 3: Random forest model used in this study 
 

Table 3: Hyperparameters used for the CNN1D model 
Hyperparameter Description Value 

Batch size Number of training examples per batch 64 
Epochs Number of times the model is trained on the dataset 150 

Learning rate Controls step size during optimization 0.001 
Kernel size Size of the convolutional filter 3 

Number of filters Number of filters in the convolutional layer 64 
Pool size Size of the max-pooling window 2 

Activation function Non-linear activation function used ReLU 
Optimizer Optimization algorithm Adam 

Loss function Function used to evaluate model performance Binary cross-entropy 
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The model's performance was further enhanced 
by combining a binary cross-entropy loss function 
with the Adam optimizer. This combination is 
successful in training neural networks to perform 
similar tasks. The convolutional layer within the 
CNN1D model applied a series of filters to the input 
sequence, allowing for the extraction of local 
features and patterns. Subsequently, the max-
pooling layer reduced the output of the 

convolutional layer into a single feature vector, 
focusing on the most significant features (Barshai et 
al., 2021). Finally, the fully connected layer 
performed a linear transformation on the feature 
vector, mapping it to a binary output determining 
whether PVPs are present. A visual representation of 
the CNN1D model proposed in this work is depicted 
in Fig. 4, illustrating the flow of information through 
the various layers of the model. 

 

Input Layer Pooling LayerConvolution Layer Flatten Layer
Fully Connected

Layer
Output

Feature Maps

 
Fig. 4: CNN model used in this study 

 

2.3.5. Long short-term memory (LSTM) 

The LSTM model is an extension of the recurrent 
neural network, developed primarily to identify 
long-term dependencies in sequential data. Fig. 5 

shows a modified version of the LSTM model used in 
this study. It was trained by running it for 150 
epochs with a batch size of 64. Hyperparameters are 
shown in Table 4. 

 
Table 4: Hyperparameters used for the LSTM model 

Hyperparameter Description Value 
Batch size Number of training examples per batch 64 

Epochs Number of times the model is trained on the dataset 150 
Learning rate Controls step size during optimization 0.001 

Number of LSTM units Number of memory units in the LSTM layer 128 
Dropout rate Fraction of neurons dropped for regularization 0.2 

Activation function Non-linear activation function used in hidden layers ReLU 
Optimizer Optimization algorithm Adam 

Loss function Function used to evaluate model performance Binary cross-entropy 

 

In the proposed model, the LSTM model is 
clamped to a fully connected layer (FCL). The LSTM 
layer evaluated the input sequence at each step, then 
yielded a hidden state and passed it to the FCL for 
classification. The activation function of ReLU was 
used in the hidden layer to generate non-linearity 
and improve model performance. The output layer 

uses a binary configuration with the help of a 
sigmoid activation function (Mehmood et al., 2022). 
To maximize model performance, the Adam 
optimizer was applied alongside binary cross-
entropy as the loss function. This particular pairing 
has demonstrated effectiveness in training the LSTM 
model for PVP prediction. 
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Fig. 5: LSTM model used in this study 
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2.3.6. Recurrent neural network (RNN) 

A recurrent neural network (RNN) is a form of 
deep learning model tailored for processing and 
converting sequential data. It handles input 
sequences like words, sentences, or time-series data 
and produces corresponding output sequences. 

Sequential data components are interrelated 
through complex semantics and syntax rules, making 
RNNs particularly effective for tasks involving such 
structured information (Attique et al., 2023). The 
hyperparameters are shown in Table 5. 

 
Table 5: Hyperparameters used for RNN model 

Hyperparameter Description Value 
Batch size Number of training examples per batch 64 

Epochs Number of times the model is trained on the dataset 150 
Learning rate Controls step size during optimization 0.001 
Hidden units Number of neurons in the recurrent layer 128 

Activation function Non-linear activation function used ReLU 
Optimizer Optimization algorithm Adam 

Loss function Function used to evaluate model performance Binary cross-entropy 

 

This study has a recurrent layer surveyed by a 
fully connected layer, as illustrated in Fig. 6. A batch 
size of 64 is used, and the model was trained for 150 

epochs. Elu is used in hidden layers, and sigmoid is 
used in the output layer. 
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Fig. 6: RNN model used in this study 

 

2.3.7. Gated recurrent unit (GRU) 

The Gated Recurrent Unit (GRU) model is a 
variant of the LSTM network. It is popular for its 
efficiency, having fewer parameters and faster 
training times (Shah et al., 2023). In this experiment, 
1 GRU layer with one FCL on top formed the core 

architecture as shown in Fig. 7. Training involved 
150 epochs along with a batch size of 64. ReLU is 
used as the activation function in the hidden layer, 
while the sigmoid function is used in the output 
layer. The hyperparameters used in the study are 
shown in Table 6. 
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Fig. 7: GRU model used in this study 



Alromema et al/International Journal of Advanced and Applied Sciences, 12(5) 2025, Pages: 129-147 

137 

 

Table 6: Hyperparameters used for the GRU model 
Hyperparameter Description Value 

Batch size Number of training examples per batch 64 
Epochs Number of times the model is trained on the dataset 150 

Learning rate Controls step size during optimization 0.001 
Hidden units Number of neurons in the GRU layer 128 

Activation function Non-linear activation function used ReLU 
Optimizer Optimization algorithm Adam 

Loss function Function used to evaluate model performance Binary cross-entropy 

 

2.3.8. Artificial neural network (ANN) 

An Artificial Neural Network (ANN) consists of 
interconnected units called artificial neurons, which 
simulate brain neurons (Naseer et al., 2022). These 
neurons are connected by edges representing 
synapses. Each neuron receives inputs from other 
connected neurons, processes these inputs, and 

sends signals to subsequent neurons. The ANN 
architecture used in this context has three fully 
connected layers, employing the ReLU function in 
the hidden layers to facilitate learning of complex 
relationships. The output layer uses a sigmoid 
function. The hyperparameters used in the study are 
shown in Table 7. 

 
Table 7: Hyperparameters used for the ANN model 

Hyperparameter Description Value 
Batch size Number of training examples per batch 64 

Epochs Number of times the model is trained on the dataset 150 
Learning rate Controls step size during optimization 0.001 
Hidden layers Number of hidden layers 3 

Neurons per layer Number of neurons in each hidden layer 128 
Activation function Non-linear activation function used ReLU 

Optimizer Optimization algorithm Adam 
Loss function Function used to evaluate model performance Binary cross-entropy 

 

These transformations allowed the model to 
sieve out a relevant feature set from the input data. 
The final layer of the network mapped the output 
from the preceding layer to a binary outcome, 
showing the presence or absence of a PVP. 

Fig. 8 provides a depiction of the ANN employed 
in this study, showcasing the flow of computations 
and data through the network layers. 

All models were implemented with the Keras 
framework with TensorFlow as the backend. Every 
model was trained on the 393 PVPs and 393 non-
PVPs and evaluated using independent testing, self-
consistency, and cross-validation of 5 and 10-fold. 

The LGBM, Random Forest, CNN1D, LSTM, RNN, 
GRU, and ANN models represent different 

approaches to processing sequential data and 
making binary predictions. Through the 
implementation of these models, their performances 
can be compared to determine the most potent 
model for accurately classifying PVP in phages. 

2.4. Evaluation metrics 

Various assessment metrics (Le and Nguyen, 
2019) are employed to evaluate the correctness of 
the proposed model, including accuracy score, 
specificity, sensitivity, and MCC score (Zhan et al., 
2018). 
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Fig. 8: ANN model used in this study 

 

2.4.1. Accuracy 

Accuracy evaluates the overall performance of a 
binary classification model (Butt et al., 2023). It 
represents the proportion of correctly recognized 

samples in the dataset. The accuracy formula is as 
follows. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                        (13) 
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2.4.2. Specificity 

The ability of a classification model to correctly 
identify negative samples is measured by specificity 
(Shah et al., 2022b). It is the proportion of real 
negative examples in the data that were accurately 
identified as negative. The specificity formula is as 
follows: 
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                                  (14) 

2.4.3. Sensitivity 

Sensitivity measures a classification model's 
ability to identify positive samples correctly 
(Jahromi et al., 2020). It denotes the fraction of 
positive examples in the dataset identified correctly 
as positive. The sensitivity formula is as follows: 
 

𝑆𝑒𝑛𝑠𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                   (15) 

2.4.4. Matthews correlation coefficient 

A more illustrative method for quantifying the 
accuracy of a model is the use of the Matthews 
correlation coefficient (MCC), a correlation 
coefficient. Based on true and false positives and 
negatives, it determines a score between -1 and 1 
(Flah et al., 2022). A value of -1 shows a wide 
discrepancy between the prediction and the actual 
outcome. At the same time, a coefficient of one 
denotes a perfect forecast, a coefficient of zero 

represents a random prediction, and so forth (Wang 
et al., 2022b). The MCC is determined as follows: 
 

𝑀𝐶𝐶 =
𝑇𝑁× 𝑇𝑃−𝐹𝑁 ×𝐹𝑃

√(𝐹𝑃+𝑇𝑃)(𝐹𝑁+𝑇𝑃)(𝐹𝑃+𝑇𝑁)(𝐹𝑁+𝑇𝑁)
                                (16) 

 

The term True Positive refers to the PVPs that the 
model accurately identifies. False Negative, on the 
other hand, represents the PVPs that exist in reality, 
but the model fails to recognize them (Shah et al., 
2022a). False Positive indicates proteins that are 
non-PVPs, but the model incorrectly identifies them 
as PVPs. Lastly, True Negative signifies non-PVPs 
that the predictor correctly identifies. 

3. Evaluation metrics 

Several rigorous tests were conducted for each 
computational model to gauge its robustness, these 
tests include the cross-validation tests, self-
consistency test, and independent set testing. 

3.1. Self-consistency 

This work used a self-consistency test to calibrate 
the trained model's efficacy. It was tested using the 
trained dataset. The results obtained from this test 
are significant as they indicate how well the model 
has been constructed.  

Several learning techniques were furnished, and 
the outcomes of self-consistency for all models are 
presented in Table 8 (Ahmad and Shatabda, 2019). 
Random Forest, RNN, ANN, CNN, and LGBM achieved 
accuracy, MCC score, sensitivity, and specificity of 1. 

 
Table 8: Self-consistency result outcomes of different models 

Model Accuracy Sensitivity Specificity MCC 
LGBM 1 1 1 1 

RF 1 1 1 1 
LSTM 0.99 0.98 1 0.98 
RNN 1 1 1 1 
GRU 0.99 0.98 1 0.98 
ANN 1 1 1 1 
CNN 1 1 1 1 

 

To further validate the self-consistency results, a 
Z-test was conducted to compare model 
performance against expected outcomes (Pallavi and 
Usha, 2024). The Z-test confirmed that the 
differences between models with an accuracy of 1 
and those slightly below (e.g., LSTM and GRU) were 
statistically insignificant (p>0.05). Among all models, 
Random Forest (RF) achieved the highest Z-score, 
further reinforcing its stability and robustness. This 
statistical validation supports the robustness of the 
models and suggests that minor variations do not 
substantially impact predictive reliability. 

In the same way, a bar chart depicted in Fig. 9 
was created to contrast the performance of the seven 
models(Liu et al., 2020). 

Receiver Operating Characteristic (ROC) curves 
were plotted for all seven models in this study to 
assess their performance in predicting PVPs. The 
ROC curve contrasts the true and false positive rates 
at various classification thresholds. The ROC curves 

in Fig. 10 show that all models had AUC values close 
to 1, indicating their strong performance in 
predicting PVPs. 

The outcomes of self-consistency affirm the 
efficiency of the computational models in precisely 
forecasting PVPs. The exceptional accuracy, MCC, 
sensitivity, and specificity scores achieved by all 
models suggest that they can adapt to new data and 
are not excessively biased toward training data. 

3.2. Independent testing 

Independent testing evaluates a predictor's 
performance on unknown data. The data is split into 
two parts. The first partition, which accounts for 
80% of the dataset, is designated as the training set, 
and the predictor learns from the input and output 
pairs provided (Ashraf et al., 2021). The remaining 
20% is reserved for testing the predictor's accuracy. 
The input features are supplied during this testing 
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phase, and the predictor is required to forecast the 
correct class label for the unseen data excluded from 
the training phase. The evaluation measures 

(Barburiceanu and Terebeș, 2022) for the classifiers 
used are presented in Table 9. 

 

 
Fig. 9: Bar chart of self-consistency result outcomes of different models 

 

 
Fig. 10: ROC curve of self-consistency result outcomes of different models 

 
Table 9: Independent results of different models 

Model Accuracy Sensitivity Specificity MCC 
LGBM 0.803 0.797 0.810 0.607 

RF 0.746 0.734 0.759 0.493 
LSTM 0.791 0.75 0.84 0.580 
RNN 0.753 0.734 0.772 0.506 
GRU 0.791 0.784 0.797 0.582 
ANN 0.759 0.734 0.784 0.519 
CNN 0.816 0.797 0.835 0.633 

 

To validate the statistical significance of the 
performance differences among the models, Z-score 
testing was performed. CNN obtained the highest Z-
score of 1.21, confirming its superior performance in 
independent testing, while RF had the lowest Z-score 
of -1.54, indicating significantly lower performance 
than the average model. CNN achieved the highest 
accuracy, followed by LGBM, whereas CNN1D and 
LGBM achieved the most heightened sensitivity of 
0.797. In the same way, LSTM achieved the highest 

specificity of 0.84, furthermore, CNN yielded a 
specificity of 0.835. Subsequently, CNN also yielded 
the highest MCC score of 0.633, while LGBM fell close 
to CNN with an MCC of 0.607. 

Fig. 11, a bar chart, was generated to compare the 
five models' accuracy, MCC, sensitivity, and 
specificity. The graph demonstrates that the LGBM 
and CNN models performed better than all other 
models regarding accuracy, MCC, sensitivity, and 
specificity. 
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Fig. 11: Bar chart of independent testing outcomes of different models 

 

ROC curves were generated for all seven models 
in this study, as shown in Fig. 12, to assess their 
ability to predict PVPs. The CNN model 
demonstrated superior performance, yielding an 
AUC value of 0.877, while the LSTM and RNN models 

followed closely behind, achieving an AUC value of 
0.838 and 0.822, respectively. The LGBM and ANN 
models also displayed promising results, exhibiting 
AUC scores of 0.804 and 0.818, respectively. 

 

 
Fig. 12: ROC curve of the independent testing result outcomes of different models 

 

Overall, in independent-set testing, it can be seen 
that LSTM and CNN1D have out-classed other 
predictors, in contrast to all other methods 

3.3. 5-fold cross-validation 

The 5-fold cross-validation splits the dataset into 
five partitions. In each iteration, one partition is used 
as a testing set and the remaining are set as training 
sets (Ayerdi et al., 2021). Henceforth, five iterations 
of the testing and training processes were 
performed, each using a disjoint part of the dataset 
as the testing set, allowing us to evaluate the 
outcomes of each computational model for unknown 
data and ensure that the models were not overfitting 

to the training data. Table 10 shows the seven 
models' results, including accuracy, MCC, sensitivity, 
and specificity (Suleman and Ali, 2021). All models 
achieved high accuracy, with CNN achieving the 
highest accuracy of 0.816, followed by GRU with 
0.814. Similarly, CNN exhibited the highest MCC 
score of 0.634, while LSTM yielded an MCC of 0.616. 
The models demonstrated impressive sensitivity and 
specificity, reflecting their effective capability to 
accurately predict both PVPs and non-PVPs (Song et 
al., 2024). In Fig. 13, a bar chart shows the outcomes 
of various models. It reveals that the CNN model 
surpassed all others in terms of accuracy, MCC, and 
specificity (Wang et al., 2021). 
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Table 10: 5-fold cross-validation results of different models 
Model Accuracy Sensitivity Specificity MCC 
LGBM 0.805 0.795 0.812 0.608 

RF 0.772 0.772 0.772 0.544 
LSTM 0.807 0.778 0.835 0.616 
RNN 0.778 0.760 0.798 0.560 
GRU 0.814 0.816 0.813 0.630 
ANN 0.785 0.775 0.792 0.571 
CNN 0.816 0.806 0.828 0.634 

 

 
Fig. 13: Bar chart of 5-fold cross-validation outcomes of different models 

 

To further validate the statistical significance of 
the model performances, Z-score testing was 
performed. CNN achieved the highest Z-score of 1.29. 
Fig. 14 displays the ROC plots for each computational 
model. The CNN model led the pack with an 
impressive AUC measure of 0.874, closely trailed by 

the LSTM, which achieved an AUC value of 0.871 
(Phloyphisut et al., 2019). High scores in accuracy, 
MCC, sensitivity, and specificity testify to the models' 
effectiveness, demonstrating their ability to 
generalize well to new data without overfitting the 
training data (Wang et al., 2022a).  

 

 
Fig. 14: ROC curve of the 5-fold cross-validation results of different models 

 

3.4. 10-fold cross-validation 

The dataset underwent another rigorous cross-
validation test, this time using 10-fold, to assess the 
models' effectiveness. The feature set is randomly 
split into ten equal partitions. The model goes 

through ten rounds of training and testing, with each 
round choosing a different partition as the test set 
while using the rest of the data as the training set 
(Almagrabi et al., 2021; Karim et al., 2025). The 
results are presented in Table 11. 
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Table 11: 10-fold cross-validation result outcomes 
Model Accuracy Sensitivity Specificity MCC 
LGBM 0.803 0.797 0.810 0.607 

RF 0.746 0.759 0.734 0.493 
LSTM 0.816 0.793 0.841 0.633 
RNN 0.802 0.797 0.806 0.606 
GRU 0.830 0.845 0.827 0.660 
ANN 0.797 0.786 0.813 0.600 
CNN 0.833 0.832 0.834 0.665 

 

Table 5 demonstrates that when compared to the 
5-fold cross-validation results, the overall accuracy 
metrics of all seven models are improved. CNN and 
LSTM models acquired the highest accuracy of 0.833 
and 0.816, respectively, while the Random Forest 
model achieved the lowest accuracy of 0.746. The 
CNN model also gained the most heightened 
sensitivity of 0.832 and the highest MCC of 0.665, 

indicating its strong performance in identifying 
PVPs. The comparison bar graph in Fig. 15 shows the 
results of all the models. An improved performance 
is observed in all models in 10-fold cross-validation 
in comparison. This proves that the model's accuracy 
is increased by the higher training sample size used 
in cross-validation based on ten-fold partitioning 
(Zulfiqar et al., 2024). 

 

 
Fig. 15: Bar chart of 10-fold cross-validation outcomes of different models 

 

The Z-score values highlight the statistical 
significance of each model’s performance, with CNN 
achieving the highest Z-score of 1.37, indicating its 
superior predictive capability. The ROC plots for the 
models in the 10-fold cross-validation are presented 

in Fig. 16. Each plot shows that all models had AUC 
values above 0.821, indicating their strong 
performance in predicting PVPs. The CNN model had 
the highest AUC value of 0.927, along with LSTM 
with an AUC of 0.887. 

 

 
Fig. 16: ROC curve of the 10-fold cross-validation results of different models 
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Overall, the cross-validation test results 
confirmed the findings of the 5-fold cross-validation, 
demonstrating the effectiveness and strength of PVP 
prediction. Higher AUC values of the ROC curves also 
indicate that the proposed models can accurately 
distinguish between PVPs and non-PVPs. 

3.5. Comparison with previous studies 

A comparison was conducted among the 
proposed model, namely PhageVir, and existing 
models to assess its effectiveness. Enumerated 
representations were created using position-specific 
and composition-variant features to convert 
proteomic sequences. The resulting feature vector 
had high dimensionality, necessitating statistical 
moments (Raw, central, and Hahn moments) to 
condense dimensions. 

This work extended prior research in the field 
and provided valuable insights into protein 
characteristics. The evaluation employed a 10-fold 
cross-validation technique, as depicted in Table 12. 
The dataset used in previous studies was collected, 
and the proposed feature extraction technique was 

applied to extract relevant features. This study 
utilized these parameters to train seven distinct 
algorithms. The classifiers developed were found 
proficient in successfully distinguishing between the 
two classes. The clarity of the feature space for 
protein differentiation was exceptional, leading to 
optimal coefficients. Results from this research 
surpassed earlier studies, especially in accuracy, 
specificity, sensitivity, and MCC score, underscoring 
the usefulness of the proposed model and the 
efficiency of the selected feature extraction method. 

In essence, the comparative analysis of PhageVir 
against preceding models highlighted its superior 
performance. This research provided valuable 
insights into protein characteristics through 
enumerated representations and the application of 
statistical moments. Cross-validation and multiple 
classifier evaluations demonstrated the approach's 
superiority, exceeding the outcomes of previous 
studies. These results emphasize the robustness of 
the proposed method and the effectiveness of its 
feature extraction methodology relative to earlier 
techniques.  

 
Table 12: Comparison with the previous state-of-the-art models 

Author/predictor Accuracy Sensitivity Specificity MCC score 
Xiaoquing Ru’s model 0.760 0.781 0.743 0.526 

DeepPVP 0.772 0.775 0.775 0.550 
PV-Pred-SCM 0.763 0.745 0.777 0.547 

Meta-iPVP 0.792 0.781 0.765 0.510 
iPVP-MCV 0.712 0.720 0.730 0.480 

Phage-UniR-LGBM 0.770 0.765 0.775 0.443 
SCORPION 0.781 0.747 0.750 0.543 
PhageVir 0.833 0.832 0.834 0.665 

 

To quantitatively establish the superiority of 
PhageVir, a statistical significance test (Z-score) was 
conducted to compare the results with previous 
models. While previous models exhibit negative Z-
scores, indicating performance below the standard 
mean, PhageVir achieves a significantly higher Z-
score of 1.37. This result confirms that PhageVir's 

performance is well above the expected mean of 
other models, demonstrating its superiority in terms 
of predictive power and robustness. Fig. 17 displays 
the ROC curves of the existing and proposed models. 
It is worth highlighting that the proposed model 
attained an impressive AUC score of 0.927. 

 

 
Fig. 17: ROC curve of the proposed model and SOTA models 
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Beyond its technical advancements, this study 
has significant biological implications. Accurate 
prediction of PVPs is crucial for applications in phage 
therapy, vaccine development, and understanding 
phage-host interactions. By efficiently distinguishing 
between phage and non-phage proteins, the model 
facilitates the identification of novel PVPs, 
potentially playing key roles in infection 
mechanisms and host specificity. This capability 
could aid in the development of targeted phage 
therapies against antibiotic-resistant bacterial 
infections, providing an alternative to traditional 
antibiotics. 

Additionally, the feature selection insights 
obtained from this study contribute to a deeper 
understanding of the functional and structural 
properties of PVPs. Identifying critical distinguishing 
features can guide experimental biologists in 
designing validation studies and exploring potential 
applications of the predicted PVPs. 

In summary, the exceptional results achieved in 
this study stem from the synergy of well-selected 
algorithms, effective feature extraction techniques, 
and rigorous evaluation methodologies. More 
importantly, the biological significance of these 
findings extends beyond computational success, 
offering valuable contributions to phage biology and 

therapeutic research. These findings reaffirm the 
potential of machine learning and deep learning 
approaches in PVP prediction and lay the foundation 
for future advancements in phage virion protein 
classification, with promising applications in 
medicine and biotechnology. 

3.6. Boundary visualization 

This section uses boundary visualization for each 
of the model to explain their effectiveness as a 
computational prediction methodology. When 
dealing with two features, a decision boundary 
represents a line separating one class from the other, 
with the majority of the samples from one class on 
one side and the samples from the other on the 
opposite side. Fig. 18 illustrates the visualization of 
boundaries for various classifiers that have 
distinguished between the opposing classes. The 
input data was present in both categories. After the 
data underwent classification by diverse 
classification algorithms, each method mapped a 
distinct space for discriminating positive and 
negative samples. Notably, the LGBM classifier 
mapped the samples such that very few of them 
were misclassified. 

 

 
Fig. 18: Boundary visualization for every classifier 

 

4. Web server 

The web server provides an accessible and 
efficient platform for computational analysis of 
arbitrary sequences, assisting researchers in 
identifying potential phage virion proteins (PVPs). 
Such online tools contribute to future breakthroughs 
by enabling rapid predictions without requiring 
extensive computational resources. The web server, 
accessible at https://hussnain-arshad-phage-
virion.streamlit.app. By inputting a protein sequence, 
the server predicts whether it belongs to the PVP or 
non-PVP class. To evaluate usability and 
performance, response time, prediction accuracy, 

and user experience were assessed. The average 
response time for sequence analysis was 3 seconds, 
ensuring near-instant results. The model’s 
predictions remained consistent with the offline 
implementation, achieving an accuracy of 85%. 
Feedback from test users indicated that the interface 
is intuitive and easy to navigate. 

5. Conclusions 

This research introduces a promising method for 
predicting Phage Virion Proteins (PVPs) using 
numerous computational intelligence models. The 
dataset, featuring 786 samples of both PVPs and 
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non-PVPs from the UniProt, was rigorously tested 
through independent set testing, self-consistency, 
and cross-validation methods. The model employs 
advanced feature selection methods, such as the 
PRIM and RPRIM, to extract key sequence attributes 
and positional relationships in protein sequences. 
Seven different methods, LGBM, Random Forest, 
CNN1D, LSTM, RNN, GRU, and ANN, were utilized to 
gauge their effectiveness based on criteria such as 
accuracy, sensitivity, specificity, and MCC score. 
Accurate identification of PVPs is crucial for 
understanding how phages infect cells and replicate. 
This research not only sheds light on phage biology 
but also opens potential pathways for developing 
new antibacterial treatments. The use of 10-fold 
cross-validation ensures models perform well and 
are not overfitted. Particularly impressive was the 
CNN model, attaining an accuracy of 0.833 and an 
MCC metric of 0.665, setting new benchmarks in the 
field. Its AUC score was also noteworthy at 0.927. 
The model achieved a Z-score of 1.37. Overall, all 
tested models showed robust accuracy, sensitivity, 
and specificity, which speaks to the robustness of the 
proposed approach. Beyond computational 
improvements, this study provides biological 
insights into phage-host interactions, contributing to 
advancements in phage therapy and antibacterial 
treatment strategies. By accurately identifying PVPs, 
PhageVir facilitates the discovery of key virion 
proteins that could inform novel antimicrobial 
interventions, offering an alternative to traditional 
antibiotics. For broader accessibility, a web server 
hosting these models is now available at hussnain-
arshad-phage-virion.streamlit.app. In summary, this 
work successfully presents the effectiveness of 
machine learning techniques in advancing the 
prediction accuracy of PVPs. This development not 
only advances phage biology research but also 
enhances the potential for novel antibacterial 
strategies. This could have significant implications 
for medical science, potentially leading to 
breakthroughs in how bacterial infections are 
treated. 
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PVP(s) Phage virion protein(s) 
PRIM Position relative incidence matrix 
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AAPIV 
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FV Frequency vector 
CNN Convolutional neural network 
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GRU Gated recurrent unit 
ANN Artificial neural network 
RF Random forest 
LGBM Light gradient boosting machine 
ACC Accuracy 
SN Sensitivity 

Sp Specificity 
MCC Matthews correlation coefficient 
AUC Area under the curve 
ROC Receiver operating characteristic 
FCL Fully connected layer 
ReLU Rectified linear unit 
OS Organism source (UniProt field) 
SCM Scoring card method 

FASTA 
Fast-all (a text-based format for representing 
nucleotide or peptide sequences) 

CD-HIT Cluster database at high identity with tolerance 
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