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This study examines the performance of several deep learning models for 
detecting bone fractures from X-ray images. Traditional radiological methods 
depend on manual interpretation, which can lead to mistakes. Deep learning 
provides a useful alternative by automating the process of fracture detection. 
In this research, five models were tested: one custom Convolutional Neural 
Network (CNN) and four pre-trained models — AlexNet, DenseNet121, 
ResNet152, and EfficientNetB3. The models were trained on a dataset 
containing 10,581 X-ray images, which were labeled as either fractured or 
non-fractured. The models’ performance was measured using accuracy, 
precision, recall, and F1-score. Among these models, EfficientNetB3 achieved 
the best results, with 99.20% accuracy and perfect recall, showing its high 
potential for use in clinical practice. ResNet152 and the custom CNN also 
performed well, although with slightly lower accuracy. The findings of this 
study emphasize the value of using advanced deep learning architectures for 
medical image analysis. 
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1. Introduction 

*Bones are often viewed as immobile structures 
that provide physical reinforcement. The process of 
bone remodeling continues throughout an 
individual's life, governed primarily by physiological 
requirements. According to Cowan et al. (2020), 
newborns typically have 270 bones, which fuse to 
form roughly 206 bones in adulthood. These include 
the skull bones, vertebrae, rib cage, and upper and 
lower extremities. Anatomical changes in specific 
bones lead to the variety in their number. An 
organism's skeletal structure comprises calcium-rich 
connective tissue and bone-specific cells. Fractures 
can be caused by pressure on a bone or by certain 
conditions (Mohanty and Senapati, 2023). The 
conventional approach to diagnosing fractures 
mostly depends on radiologists' ability to visually 
study X-ray images to identify and categorize 
fractures (Sharma, 2023). Every year, a substantial 
number of people suffer fractures, necessitating a 
prompt and correct diagnosis to avoid long-term 
injury or death. 
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X-rays are widely utilized in diagnosing bone 
fractures due to their rapidity, affordability, and 
user-friendliness, making them one of the primary 
tools in medical imaging. Medical imaging is 
essential for diagnosing and treating various medical 
disorders, such as fractures in orthopedics. AI has 
rapidly attracted more attention as a means of 
improving medical imaging interpretation and 
raising diagnosis accuracy. Accurate fracture 
detection is essential for determining the most 
appropriate treatment and forecasting the result. 
Fracture detection and classification have 
extensively utilized traditional machine learning 
methods for pre-processing, feature extraction, and 
classification. Aso-Escario et al. (2019) identified the 
delayed detection of spine fractures as a significant 
public health hazard. Moreover, if a fracture is 
misdiagnosed or undiagnosed, it can lead to 
nonunion, malunion, or additional harm to the 
surrounding tissues and the fractured bone. 

Traditional fracture detection comprises 
radiologists visually examining X-rays to identify and 
categorize fractures. However, many factors can 
make X-ray interpretation difficult. However, 
according to Sharma (2023), this approach has the 
potential to be time-consuming, based on personal 
judgment, and susceptible to mistakes, especially 
with complex fracture patterns or slight anomalies. 
Radiologists are often exhausted and make mistakes 
due to excessive workloads and tight deadlines. 
Patients, doctors, and radiologists can be harmed by 
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incorrect fracture diagnosis. The study by Taylor-
Phillips and Stinton (2019) indicated that 
radiologists have poor focus, eye fatigue, and 
fracture detection. This shows how weariness affects 
diagnosis accuracy. Emergency misdiagnosis can 
increase without a second opinion. 

Medical imaging applications show deep learning 
(DL) efficacy. CNNs and RNNs, deep learning models, 
can represent imaging data hierarchically and 
independently recognize fracture patterns. CNN-
based deep learning algorithms excel at picture 
recognition. This makes them ideal for medical 
picture interpretation. Sharma (2023) suggested 
training these models on large datasets with 
annotations to improve performance and fracture 
detection sensitivity and specificity. This helps 
identify subtle patterns and features humans may 
overlook in X-ray pictures, improving fracture 
detection accuracy and efficiency. In this context, 
several deep learning models will be evaluated for 
the classification of X-ray images into fractured and 
non-fractured. The aim is to improve comprehension 
of the theme and come up with suggestions that 
future researchers can use. 

The purpose of this research is to evaluate the 
performance of different deep learning models in 
detecting bone fractures from X-ray images. Given 
the limitations of traditional radiological methods, 
which rely on manual interpretation and are prone 
to errors, deep learning offers a promising 
alternative for automating fracture detection. Five 
models were evaluated: a custom Convolutional 
Neural Network (CNN) and four pre-trained 
architectures — AlexNet, DenseNet121, ResNet152, 
and EfficientNetB3. 

2. Literature review 

Recent advances in deep learning have improved 
medical picture classification. According to several 
studies, DL models outperform conventional 
methods in this discipline. Tanzi et al. (2020) studied 
DL for X-ray bone fracture classification. Researchers 
analyzed and evaluated deep-learning research that 
categorized bone fractures. Tanzi et al. (2020) found 
that deep learning, particularly CNNs, can now 
diagnose bone fractures like humans. 

Yadav et al. (2022) conducted their investigation 
alternatively. Yadav et al. (2022) proposed SFNet 
which uses a combination of machine learning and 
deep learning approaches to accurately detect bone 
fractures. Yadav et al. (2022) sought to achieve 
precise detection of bone fractures to accurately 
identify and assess the severity of the fractures. To 
evaluate their performance, the researchers 
conducted a comparative analysis of various CNNs: 
AlexNet, VGG16, ResNeXt, and MobileNetV2. Their 
hybrid model, which integrated edge detection 
approaches, demonstrated improved classification 
accuracy and computing efficiency performance. The 
study emphasized the significance of combining 
many modes of features to improve the diagnostic 
precision of deep learning models. Contrary to Tanzi 

et al. (2020) and Yadav et al. (2022) placed greater 
emphasis on the integration of conventional 
machine-learning methods. 

Yadav et al. (2022) proposed a hybrid SFNet DL 
model that assists doctors in obtaining a second 
opinion on diagnosing fractures and healthy bones. 
Nevertheless, some obstacles impede the 
advancement of DL in this domain. In their study, Su 
et al. (2023) highlighted the obstacles that hinder the 
consistent advancement and comparison of 
approaches in the field. These challenges encompass 
the lack of specific standards for identifying, 
categorizing, identifying, and specifying tasks. The 
objective of Su’s et al. (2023) research was to tackle 
these concerns. A comprehensive analysis and 
evaluation of 40 articles from reputable databases 
such as WOS, Scopus, and EI. The authors examined 
alternative CNNs and evaluated their effectiveness in 
various fracture detection tasks. The authors 
emphasized the drawbacks of conventional two-
stage detectors compared to more sophisticated 
models such as Faster R-CNN, which exhibited 
superior precision in detecting fractures in various 
anatomical locations. The researchers concluded that 
although deep learning algorithms perform similarly 
to clinicians, their clinical application still struggles 
to establish reliability. 

Jones et al. (2020) created a deep learning system 
to identify fractures in various body parts, attaining 
exceptional accuracy and AUC ratings. Their 
approach successfully identified fractures in many 
clinical contexts, including emergencies. The study 
provided empirical evidence that DL systems can 
significantly reduce diagnostic errors and improve 
patient outcomes by promptly and accurately 
identifying fractures. In a further study conducted in 
2022, Hardalaç et al. (2022) enhanced fracture 
detection methods by developing five distinct 
ensemble models. These models were combined to 
create a single detection model known as 'wrist 
fracture detection-combo. The findings 
demonstrated that DL models can attain elevated 
levels of sensitivity and specificity, rendering them 
appropriate for clinical application in fracture 
identification. 

Deep learning algorithms are now favored for 
medical image categorization because they can 
automatically extract essential features from raw 
images. ResNet50, VGG16, and Inception are notable 
among the different designs. See Tables 1 and 2. 

Substantial advances in deep learning have 
dramatically altered medical imaging categorization, 
including noteworthy developments in bone fracture 
identification. CNNs, together with advanced models 
like ResNets and EfficientNets, witness wider use 
because of their phenomenal ability to extract 
features from images. Regardless of the recent 
breakthroughs, multiple fundamental problems 
continue to affect medical imaging datasets and 
decrease model interpretation abilities, rendering 
them more computationally adept. The extensive use 
of deep learning in clinical procedures will yield 
effective outcomes when resolving existing issues. 
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Table 1: Comparison of models and techniques 
Reference Models evaluated Best performing model Key findings 

Tanzi et al. (2020) 

VGG16, CaffeNet, Network-in-
Network 

VGG16 VGG16 outperformed other models; a high dataset required 

Yadav et al. 
(2022) 

AlexNet, VGG16, ResNeXt, 
MobileNetV2 

SFNet + Canny 
The hybrid model showed the highest accuracy; edge detection 

improved the performance 

Su et al. (2023) Faster R-CNN, Inception-ResNet Faster R-CNN 
Faster R-CNN provided the highest accuracy across various 

tasks 
Jones et al. (2020) Custom DL system Custom DL system High performance across multiple anatomical regions 

Hardalaç et al. 
(2022) 

Faster R-CNN, ResNeXt101, FPN Faster R-CNN High sensitivity and specificity; suitable for clinical use 

 
Table 2: Class distribution fractured and non-fractured images across the training, validation, and test sets 

Type 
Sample count 

Training set Validation set Test set Total 
Fractured 4606 337 238 5181 

Non-fractured 4640 492 268 5400 
Total 9246 829 506 10581 

 

Although previous research provides significant 
insights, the literature analysis highlights the 
substantial gap in developing and evaluating DL 
models for fracture detection. An important obstacle 
is the limited availability of extensive, varied, and 
thoroughly analyzed datasets that are appropriate 
for training resilient models. Existing studies 
frequently use small, diverse datasets that may not 
effectively represent clinical imaging quality and 
anatomical variations. Interpretability, regulatory 
approval, and clinician acceptance must also be 
addressed when integrating deep learning models 
into healthcare workflows. Model predictions must 
be reliable and interpretable to obtain the trust of 
healthcare professionals and regulatory agencies. 
Standardized model training, validation, and 
evaluation processes are needed to compare 
techniques and ensure study repeatability. This 
research develops and validates deep learning 
models utilizing big datasets of varied patient groups 
and clinical settings to close these gaps. The present 
models still encounter multiple restrictions. Su et al. 
(2023) conducted a review of 40 studies about 
detecting skeletal fractures while showing that 
research used conflicting metrics to evaluate models 
and different standards for dataset construction. The 
authors report that standardization benchmarks are 
non-uniform across studies, thus hampering 

research comparisons. Hardalaç et al. (2022) 
developed ensemble models targeting wrist fracture 
detection, which proved that combining multiple 
models could yield more accurate classification 
results. They designed a framework demanding an 
array of computational capabilities that could 
restrict its use in medical environments. 

3. Methodology 

This section outlines the methodology employed 
in our study to detect bone fractures using deep 
learning models. We begin by describing the data set 
used for training and testing our models, followed by 
a discussion of the deep learning architectures 
evaluated. Next, we detail the metrics used to assess 
model performance and the training and testing 
procedures adopted. Fig. 1 illustrates a brief 
overview of the proposed methodology to identify 
bone fractures. By detailing these elements, we give 
a complete overview of the phases utilized to ensure 
the models were optimized and rigorously evaluated 
for their ability to accurately detect bone fractures 
from medical imaging data. The approach ensures a 
thorough and reproducible evaluation of the deep 
learning models in this critical healthcare 
application. 
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Fig. 1: Schematic representation of the proposed method for bone fracture detection (data preprocessing, model training, 

and validation) 
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3.1. Dataset description and preprocessing 

The dataset that we used for training and testing 
the bone fracture detection models was sourced 
from the Kaggle repository (Rodrigo, 2024). It 
comprises X-ray images categorized into regions 
where fractures are present or absent. The dataset 
contains a variety of X-ray images from multiple 
bodily sections, with lower limbs, upper limbs, 
lumbar, hips, knees, etc., providing a comprehensive 
foundation for training deep learning models to 
identify fractures across different bones. The entire 
dataset is divided into three separate folders: 
training, testing, and validation. Each folder contains 
radiographic images categorized as either fractured 
or non-fractured. Fig. 2 showcases representative 
images from the dataset, featuring both fractured 

and non-fractured examples. In total, the dataset 
includes 10,581 X-ray images, divided into training 
(9246), validation (829), and testing (506) sets to 
evaluate model performance effectively. Tables 1 
and 2 show the distribution of images belonging to 
fractured and non-fractured classes. The X-ray 
images varied in size, necessitating preprocessing 
steps to standardize the data prior to inputting it 
into the models. We applied standard image 
preprocessing methods, including resizing, 
normalization, and augmentation, to increase the 
superiority of the training data. Thus, preprocessing 
involved resizing the images to a unique dimension 
that is suitable for a specific deep learning model and 
normalizing (i.e., scaling) pixel values to fall within a 
specific range. 

 

Fractured 

   

Non-fractured 

   
Fig. 2: Some sample fractured and non-fractured images from the dataset 

 

Data normalization is an important 
preprocessing step before training a deep learning 
model. It ensures that all input features are on a 
similar scale. In deep learning, particularly when 
using gradient-based optimization methods like 
stochastic gradient descent (SGD), the performance 
and convergence of the model are strongly affected 
by the scale of the input data (Goodfellow, 2016). If 
the features are not scaled, variables with larger 
ranges could dominate the learning process, leading 
to slower convergence or a suboptimal model. 
Moreover, deep learning models often use activation 
functions like sigmoid or ReLU, which are sensitive 
to the magnitude of the input values (Nwankpa et al., 
2018). For instance, if data is not scaled, gradients 
calculated for some features may be too large or too 
small, which may obstruct the model's capacity to 
identify optimal weights during training. Thus, 
scaling helps avoid issues like exploding or vanishing 
gradients, which occur when weights update 
inconsistently across layers. We used the technique 
division by maximum value where all pixel values 
are divided by 255 to normalize them to the range 
[0, 1]. These steps ensure that the model trains 
efficiently and generalizes better to unseen data. 
Additionally, we implemented data augmentation 
strategies to enhance the quality and quantity of our 
training data, which is particularly important for 
medical image classification problems. These 

techniques helped prevent overfitting and enhance 
model generalization. Table 3 outlines the 
augmentation methods used in this study. This 
preprocessing pipeline ensured that the models 
could generalize well across diverse X-ray images, 
improving their ability to accurately detect bone 
fractures. In summary, the following pre-processing 
steps were performed to ensure consistent input 
data quality and facilitate efficient training: 

 
 Resizing: All X-ray images were resized to 

224×224 pixels for compatibility with pre-trained 
models. 

 Normalization: Pixel values were normalized to 
the range [0, 1] by dividing by 255, ensuring that 
input features were on a similar scale, thereby 
improving model convergence. 

 Data Augmentation: To increase the diversity of 
training data and prevent overfitting, we applied 
augmentation techniques such as rotation (±40°), 
width and height shifts (±20%), zooming (±20%), 
shearing (±20%), and horizontal flipping. 

3.2. Deep learning models 

This section provides a summary of the deep-
learning models that we assessed for bone fracture 
detection. Various architectures, ranging from 
traditional convolutional neural networks (CNNs) to 
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more advanced models like ResNet152 and 
EfficientNetB3, were selected due to their 
demonstrated success in medical image analysis 
tasks. Every single model brings unique strengths, 
such as deeper layers, efficient feature extraction, or 
reduced parameter complexity, making them 
suitable for handling the complexities of medical 
imaging. Additionally, specific modifications and 
customizations were applied to tailor these models 
for our dataset and improve their performance in 
detecting fractures. Below, we provide a brief 
description of each model used in our study. 

 
Table 3: Image augmentation settings 
Method Amount/value 

Width shift 0.2 
Height shift 0.2 

Rotation range 40 
Shear range 0.2 
Zoom range 0.2 

Horizontal flip true 
Fill mode “nearest” 

3.2.1. Custom CNN model 

Fig. 3 demonstrates the suggested Convolutional 
Neural Network (CNN) architecture designed to 
detect bone fractures, which is composed of multiple 
essential layers that systematically extract and 
enhance features from input X-ray images measuring 

128x128 pixels. The architecture of the network 
initiates with three convolutional layers, each 
employing Rectified Linear Unit (ReLU) activation 
functions, which facilitate the incorporation of non-
linearity, thereby enabling the network to acquire 
more intricate forms of information. The first 
convolutional layer applies 32 filters, each 
measuring 3x3 pixels, to the input image. The second 
layer uses 64 filters of size 3x3 on the output of the 
previous layer. It captures more complex features at 
a finer scale. The third layer employs 128 filters, 
each measuring 3x3 pixels. As we go deeper into the 
network, we increase the number of filters to 
capture even more abstract and high-level features. 
Following each convolutional operation, max pooling 
is employed to reduce the spatial dimensions and 
computational load while preserving important 
information. Following the feature extraction layers, 
a flattening layer transforms the two-dimensional 
feature maps into a one-dimensional vector. This 
vector is subsequently fed into a fully connected 
dense layer containing 128 neurons to acquire 
complex features at a higher level. During training, a 
dropout layer is used to reduce overfitting by 
disabling half of the neurons randomly. The final 
layer of the model consists of two neurons and uses 
the softmax activation function to determine the 
likelihood of a fracture or non-fracture. 
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Fig. 3: Proposed CNN architecture for bone fracture detection 

 
3.2.2. Pre-trained CNN models 

The AlexNet (Krizhevsky et al., 2017) model, 
implemented for this study, follows a deep learning 
architecture constructed for image classification. It 
works with images that are 227x227 pixels and have 
three color channels (red, green, and blue). The 
network starts with a wide receptive field in its 
initial convolutional layer, using 96 filters of size 
11x11 with a stride of 4. This is followed by batch 
normalization and max pooling, which help decrease 
the spatial dimensions and reduce the computational 
complexity. The second convolutional layer uses 256 
filters of size 5x5 pixels to detect larger-scale 
patterns in the image. After this layer, batch 
normalization and max pooling are applied to 
stabilize the training process and reduce the size of 
the feature maps. The third, fourth, and fifth 
convolutional layers use 384, 384, and 256 filters, 
respectively, with a size of 3x3 pixels. These layers 
continue to extract features from the image, focusing 

on finer details as we progress through the network. 
Max pooling is applied after the fifth layer to reduce 
the feature map size and prepare the output for the 
subsequent layers. 

After the convolutional layers extract features 
from the image, these features are flattened into a 
one-dimensional vector. This reshaping allows the 
extracted information to be processed by the fully 
connected layers. These layers take the flattened 
features and analyze them to make a final prediction 
about the content of the image. Each layer has 4096 
neurons and ReLU activation, which means there are 
4096 interconnected nodes in each layer. These 
layers help the network learn more complex and 
abstract features from the input data. To avoid 
overfitting, dropout is applied after each dense layer, 
where 50% of the neurons are randomly deactivated 
during training. This technique forces the network to 
rely on multiple neurons for learning, improving 
generalization by reducing the model's dependence 
on any single set of features. The final output layer 



Abdulmajeed Alsufyani/International Journal of Advanced and Applied Sciences, 12(5) 2025, Pages: 68-81 

73 
 

employs a softmax activation function, which 
converts the network's outputs into probabilities for 
each class. In this case, it predicts the likelihood that 
an input belongs to one of two categories—fractured 
or non-fractured. This architecture, known for its 
success in large-scale image classification, is well-
suited to handle the complex task of detecting bone 
fractures in medical images. 

The second pre-trained model we used is called 
DenseNet121 (Huang et al., 2017). It's a type of deep 
learning model that uses a special architecture 
known as Dense Convolutional Network (DenseNet). 
It is known for its efficient feature reuse and 
compact structure, where each layer collects inputs 
from all prior layers. This densely connected pattern 
helps in reducing the number of parameters and 
promoting feature propagation, which is particularly 
useful in medical imaging tasks that require 
extracting delicate features. DenseNet121 is 
composed of several dense blocks, each made up of 
multiple convolutional layers. Within these blocks, 
every layer is connected to all preceding layers, 
allowing for improved feature propagation. After 
each dense block, there is a transition layer that 
utilizes pooling to reduce the spatial dimensions of 
the feature maps. DenseNet121 has been pre-trained 
on the ImageNet dataset, enabling it to learn robust, 
general-purpose features that can be adapted for 
specialized tasks such as bone fracture detection. 

In this study, DenseNet121 is specifically fine-
tuned to enhance its performance in detecting bone 
fractures. The pre-trained DenseNet121 model we 
used was originally trained on the ImageNet dataset. 
When we loaded this model, we excluded the top 
layer, which is responsible for making final 
predictions. The input images are resized to 
224x224 pixels to match the input requirements of 
DenseNet121. After the pre-trained DenseNet121 
model processes the input image, the output is a set 
of feature maps. These feature maps represent 
different aspects of the image. To reduce the 
dimensionality of these feature maps and convert 
them into a single vector, a technique called global 
average pooling is used. After the global average 
pooling, a fully connected layer with 512 neurons is 
added to the network. This layer combines the 
features extracted from the image into a higher-level 
representation.  

To prevent the model from overfitting, a dropout 
layer is used. This layer randomly deactivates 50% 
of the neurons during training. This forces the 
remaining neurons to learn to perform their tasks 
without relying too heavily on the deactivated 
neurons, making the model more adaptable and less 
likely to memorize the training data. Finally, a dense 
layer containing a single neuron is implemented with 
a sigmoid activation function to facilitate binary 
classification.  

This layer predicts whether the input X-ray image 
indicates the presence of a fracture or not, producing 
an output that represents the probability of fracture 
occurrence. To optimize the model's performance for 
this task, the convolutional layers of the 

DenseNet121 base model are kept fixed, preventing 
any updates to their weights during the training 
process. This approach helps preserve the valuable 
features learned from the initial training, allowing 
the model to concentrate on refining the subsequent 
layers specifically for the fracture detection task. 
This approach allows only the newly added layers to 
be trained on the bone fracture dataset. It takes 
advantage of DenseNet121's robust feature 
extraction abilities while specifically adapting the 
model to excel at the current task. 

Our third pre-trained model is ResNet-152 (He et 
al., 2016), which is a very deep convolutional neural 
network (CNN) architecture based on the concept of 
residual learning. ResNet-152 comprises 152 layers 
and was developed to address the vanishing gradient 
issue commonly encountered in deep networks. 
Utilizing residual connections enables the training of 
much deeper models while maintaining effective 
learning, improving performance without suffering 
from the degradation problems typically associated 
with very deep architectures. The key feature of 
ResNet (Residual Networks) is the use of residual 
blocks, where the input to a layer is added to the 
output of a few stacked layers (skip connections). 
Skip connections help gradients move smoothly 
through the network while training, which makes 
the process more efficient and allows for improved 
performance in deeper neural networks. 

For the bone fracture detection task, ResNet152 
is fine-tuned after loading with its pre-trained 
weights. The base model is used without its top 
classification layer, so the network can be adapted to 
the specific requirements of our binary classification 
problem. The input images are resized to 224x224 
pixels to match the input size expected by 
ResNet152. Once features are extracted from the 
base ResNet-152 model, global average pooling is 
employed to shrink the dimensionality of the feature 
maps and flatten them into a vector. This vector 
flows through a densely linked layer featuring 1024 
neurons, employing the ReLU activation function, 
which empowers the model to grasp complex 
patterns within the dataset. To prevent the model 
from overfitting, a dropout layer is used. This layer 
randomly deactivates 50% of the neurons 
throughout the training process. The final layer 
constitutes a densely connected layer featuring a 
single neuron that employs a sigmoid activation 
function, thereby generating the likelihood of a 
fracture as depicted in the specified X-ray image. 

In this approach, unlike partial fine-tuning, all 
layers of the ResNet152 base model are unfrozen, 
allowing the entire network to be retrained. This 
enables the model to update the weights of both the 
pre-trained ResNet layers and the layers added on 
top to specialize in bone fracture detection. This full 
fine-tuning permits the model to obtain subtle, 
domain-specific patterns present in the medical X-
ray images while benefiting from the powerful 
feature extraction capabilities learned from 
ImageNet. 
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The final pre-trained model that we used is 
EfficientNetB3 (Tan and Le, 2019), part of the 
EfficientNet family, which scales a model's depth, 
width, and resolution equally through a compound 
scaling method. This architecture is designed to 
achieve better accuracy with fewer parameters 
compared to traditional models, making it highly 
efficient for both computational cost and 
performance. EfficientNetB3 uses an input image 
size of 300x300 pixels and has fewer parameters 
than other networks while delivering strong results 
on image classification tasks. It is pre-trained on the 
ImageNet dataset, allowing it to leverage the rich, 
general-purpose features learned during large-scale 
image classification. 

This study involves fine-tuning the EfficientNetB3 
model specifically for identifying bone fractures. The 
base model, pre-trained on ImageNet, is loaded 
without its top classification layers, making it 
adaptable for the binary classification of fractured 
versus non-fractured bones. Input images are 
resized to 300x300 pixels to align with the input size 
required by EfficientNetB3. To fine-tune the model 
for this specific task, the last 20 layers of the 
EfficientNetB3 model are unfrozen, allowing these 
layers to be trained on the bone fracture dataset. By 
selectively unfreezing certain layers, the model can 
adapt to task-specific patterns while preserving the 
strong feature extraction abilities gained from pre-
training on ImageNet in the earlier layers. 

After the base model's results are generated, 
global average pooling is utilized to convert the 
feature maps into a singular vector. This vector is 
then sent through a fully connected layer consisting 
of 1024 neurons that employ ReLU activation. This 
layer assists the model in understanding complex 
patterns within the data. Ultimately, a dense layer 
consists of a single neuron that utilizes sigmoid 
activation to determine the likelihood of a fracture in 
the X-ray image and categorize it as either fractured 
or non-fractured. By freezing the majority of the 
EfficientNetB3 model and only retraining the top 
layers, we ensure that the model is computationally 
efficient while effectively learning the specific 
features necessary for bone fracture detection. 

3.2.3. Summary of model configurations 

In summary, we evaluated a range of deep 
learning architectures, including a custom CNN and 
pre-trained models such as EfficientNetB3, 
ResNet152, AlexNet, and DenseNet121. Specific 
configurations include: 

 
 Input Shape: We have used an input image size of 

224×224 for pre-trained models and 128×128 for 
custom CNN. 

 Activation Functions: ReLU was used in all 
intermediate layers due to its computational 
simplicity and efficiency in mitigating the 
vanishing gradient problem. ReLU is particularly 
advantageous as it introduces non-linearity 
without saturating, thereby allowing faster 

convergence. The final dense layer used a sigmoid 
activation function, as the task involved binary 
classification. The sigmoid maps the output to a 
probability range [0, 1], making it suitable for 
predicting the presence or absence of fractures. 

 Pooling Mechanisms: Global average pooling 
(GAP) was utilized in pre-trained models, while 
max-pooling was employed in the custom CNN. 
GAP computes the average feature map values for 
each channel, significantly reducing the spatial 
dimensions while preserving channel-specific 
information. It also prevents overfitting by 
reducing the number of parameters compared to 
fully connected layers. On the other hand, max 
pooling was applied after each convolutional block 
to down-sample feature maps. Max pooling selects 
the maximum value within a defined kernel (e.g., 
2×2), enabling the extraction of the most 
prominent features while reducing spatial 
dimensions.  

 Training Parameters: All models were trained for 
20 epochs with a batch size of 32 using the binary 
cross-entropy loss function. 

3.3. Evaluation metrics 

Deep learning models were assessed for their 
ability to detect bone fractures using various metrics 
like accuracy, precision, recall, and F1-score.  
Accuracy measures the proportion of correctly 
classified images (fractured or non-fractured) in 
relation to the overall number of images analyzed. It 
offers a comprehensive overview of the model's 
efficiency across the complete dataset. Precision is 
the measure of accurately predicted fracture cases 
relative to all images categorized as fractures. This is 
particularly important when false positives (non-
fractures classified as fractures) are costly, such as in 
medical diagnosis. Recall, also known as sensitivity, 
pertains to the rate at which the model correctly 
identifies actual fractures.  

High recall is critical in medical tasks to minimize 
missed fractures (false negatives), ensuring that 
patients with fractures are correctly diagnosed. The 
F1-Score is a metric that integrates both precision 
and recall, particularly beneficial when dealing with 
imbalanced datasets where there are fewer 
instances of fractures compared to non-fractured 
cases. It provides a balance between precision and 
recall. 

For bone fracture detection, these metrics are 
crucial. Accuracy alone might not be enough, as it 
could be misleading in an imbalanced dataset where 
non-fractured cases dominate. Precision and recall 
become more important, as precision ensures fewer 
false positives, and recall ensures that most actual 
fractures are detected. The F1-score is useful for 
evaluating models in this context because it finds a 
middle ground between accuracy and completeness. 
These metrics together ensure that the model is 
reliable and minimizes diagnostic errors, crucial for 
patient care. 
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3.4. Training and testing 

The deep learning models were trained to detect 
bone fractures using TensorFlow and the Keras 
functional API, with free GPU resources provided by 
Google Colab for computational efficiency. We 
trained the models for a duration of 20 epochs 
utilizing a batch size of 32 to ensure a balanced 
trade-off between computational load and gradient 
updates. A summary of our model configurations, 
including hyperparameters, can be found in Table 4. 
Key hyperparameters and training configurations 
are as follows: 

 
 Optimizer: The study utilized the Adam optimizer 

set at a learning rate of 0.0001. Adam is a popular 
choice due to its adaptive learning rate and 
capability to manage sparse gradients often 
encountered in image data. 

 Loss Function: We chose the binary_crossentropy 
loss function because our classification task 
involves distinguishing between fractures and 
non-fractures, which are binary outcomes. This 
loss function is well-suited for models predicting 
probabilities in binary classification problems. 

 Evaluation Metric Used for Model Training: The 
primary metric tracked during training was 
accurate, which provides insight into how well the 
model is learning to classify fractured and non-
fractured X-ray images. 

 
Table 4: Listing of model settings and hyperparameters 

Parameters Value 
Batch size 32 

Epochs 20 
Optimizer Adam 

Learning rate 0.0001 
Loss function Binary cross entropy 

Pooling 
Max-pooling (custom CNN) Global Average 

(pre-trained CNNs) 
Activation sigmoid (last dense layer) 

Pre-trained CNN 
weights 

ImageNet 

 

The hyperparameter tuning process involved 
adjusting critical parameters to achieve optimal 
model performance. The following hyperparameters 
were tuned during the training process: 

 
 Batch Size: We experimented with batch sizes of 

16, 32, and 64, ultimately selecting 32 for a 
balance between convergence speed and memory 
efficiency. 

 Learning Rate: The learning rate varied in the 
range of 1×10−5 to 1×10−3 using a grid search. The 
optimal learning rate of 1×10−4 was selected based 
on validation performance. 

 Dropout Rate: A dropout rate of 0.5 was chosen to 
prevent overfitting, based on experiments with 
values ranging from 0.3 to 0.7. 

 
To validate the model during training, a portion 

of the dataset was set aside as the validation set as 
mentioned in Tables 1 and 2. After every epoch, the 
model's effectiveness was assessed on this dataset to 

check for overfitting and evaluate how well it would 
perform on new data. 

After the models were trained, they were tested 
on a separate set of X-ray images. These images were 
not used at all during the training or validation 
phases. To ensure a comprehensive evaluation of the 
model's ability to detect bone fractures, they were 
assessed using multiple performance metrics. These 
metrics included accuracy, precision, recall, and F1-
score. To calculate the performance metrics, the 
model's predictions for the test set were compared 
to the actual labels of those images. 

By testing the models on a separate test set, we 
were able to evaluate how well they generalized to 
new, unseen data. This is important because it 
ensures that the models are practical and can be 
used in real-world medical settings. By using a 
variety of metrics, we were able to comprehensively 
evaluate the model's ability to accurately identify 
fractures and get around misclassifications. 

4. Results and discussions 

This section of the paper presents the results of 
the deep-learning models used to detect bone 
fractures. It also provides a detailed analysis of these 
results. In total, five models were evaluated: one 
custom Convolutional Neural Network (CNN) and 
four pre-trained models (AlexNet, DenseNet121, 
ResNet152, and EfficientNetB3), all fine-tuned for 
this specific task. The performance metrics that we 
used to assess the models offer insights into the 
models’ capacity to accurately identify fractures, 
minimize false positives, and generalize effectively. 
We aim to provide a detailed comparison of the 
strengths and weaknesses of each model and discuss 
their effectiveness in detecting bone fractures from 
X-ray images. Subsequently, we also interpret the 
reasons behind the varying performances of the 
models, considering factors such as architecture 
complexity and training efficiency. In addition to 
discussing the technical performance of the models, 
we will also explore how these findings can be 
applied in a real-world medical setting. This includes 
evaluating the potential of these models to assist in 
medical diagnosis. Finally, we will address the 
weaknesses of this study and propose avenues for 
further study to enhance the application of deep 
learning in fracture detection. 

4.1. Performance analysis 

As shown in Table 5, EfficientNetB3 
outperformed the other models by a significant 
margin, with an accuracy of 99.20%. EfficientNetB3's 
excellence is due to its revolutionary compound 
scaling strategy, which balances network depth, 
width, and resolution, optimizing performance while 
retaining computational efficiency. The model's 
exceptional performance, achieving near-perfect 
precision and recall for both fractured and non-
fractured cases, demonstrates its competence in 
dealing with the inherent difficulties of medical 
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imaging data. Its efficient scaling method allows for 
better performance with fewer parameters, making 
it highly accurate and resource-efficient. The 
confusion matrix for EfficientNetB3, as shown in 
Table 6, demonstrates few misclassifications, 
supporting its resilience and dependability for 
clinical applications. The absence of false negatives 
(FN = 0) indicates that the EfficientNetB3 model 
successfully detected every fracture in the dataset. 
This is crucial in medical diagnosis since missing a 
fracture (FN) can lead to severe clinical 
consequences. With only 4 false positives, the model 
shows high precision, meaning it rarely misclassifies 
healthy cases as fractures. This reduces the 
likelihood of unnecessary interventions or further 
diagnostics. Despite its high performance, 
EfficientNetB3's recall of 100% suggests that it may 
slightly be overfitted with the training data, though 
its high F1-score mitigates this concern. 

 
Table 5: Performance results obtained from various 

models for the detection of bone fracture using test dataset 
Model Accuracy Precision Recall F1-score 
CNN 98.02% 97.60% 98.36% 97.98% 

AlexNet 89.72% 86.78% 95.15% 90.73% 
DenseNet-121 91.10% 92.43% 90.67% 91.54% 

ResNet-152 98.22% 98.50% 98.10% 98.30% 
EfficientNetB3 99.20% 98.53% 100% 99.26% 

 
Table 6: Confusion matrix for the studied models using 
test dataset having non-fractured and fractured samples 

Model used TN TP FP FN 
CNN 252 243 5 4 

AlexNet 199 255 39 13 
DenseNet-121 218 243 20 25 

ResNet-152 234 263 4 5 
EfficientNetB3 234 268 4 0 

 
ResNet-152 and CNN also performed well, with 

accuracies of 98.22% and 98.02%, respectively. 
ResNet-152’s architecture, which includes a deep 
residual learning framework, efficiently addresses 
the vanishing gradient problem, allowing the model 
to retain and transfer knowledge across its layers. 
This architectural advantage most certainly 
contributed to its excellent accuracy, making it a 
viable candidate for applications requiring detailed 
feature extraction, such as bone fracture 
identification. The low number of false positives (FP) 
shows the model’s ability to avoid unnecessary 
diagnoses of fractures in healthy individuals. The 
presence of 5 false negatives (FN) indicates that the 
model missed detecting some fractures, which 
slightly impacts the recall. This can be critical in 
medical applications since undetected fractures may 
lead to improper patient treatment. The low FN 
count still indicates strong overall detection 
performance. However, the model is computationally 
expensive and may require more resources and time 
to train, which could limit its accessibility for some 
applications. Similarly, the CNN model's simple 
architecture, which had three convolutional layers 
followed by dense layers, was beneficial in 
producing competitive results. The low number of 
false positives (FP) and false negatives (FN) 
demonstrates that the custom CNN has strong 

generalization capabilities. In particular, the high 
precision shows the model’s ability to minimize 
unnecessary fracture diagnoses, while high recall 
indicates its ability to detect most fractures 
accurately. While the model performs well, it is 
slightly outperformed by more complex models like 
ResNet-152 and EfficientNetB3, indicating that 
further optimization could potentially improve 
performance. 

DenseNet121, despite its reputation for efficient 
feature reuse and high generalization capabilities, 
attained an accuracy of 91.10%. While this model 
performed consistently, as seen by balanced 
precision, recall, and F1 scores, it did not achieve the 
accuracy of ResNet-152 or EfficientNetB3. The 
marginally inferior performance of DenseNet121 
could be attributed to its complicated connectivity 
design, which, while useful in some situations, may 
not have provided a major advantage in this 
application. The relatively high number of false 
negatives (FN) and false positives (FP) indicates that 
the model struggled more with distinguishing 
between fractured and non-fractured cases 
compared to other models, leading to lower 
precision and recall. The relatively high number of 
false classifications (both FP and FN) suggests that 
the model may be overfitting, especially given the 
complex nature of DenseNet-121. Overfitting could 
prevent the model from generalizing well to unseen 
data. 

AlexNet, with an accuracy of 89.72%, performed 
the least effectively of the models examined. 
Although AlexNet was innovative when it was first 
introduced, its relatively shallow architecture and 
limited depth and capacity make it less capable of 
catching the subtle patterns found in medical 
imaging datasets than more contemporary systems. 
The decreased recall for the fractured class in 
AlexNet suggests a higher likelihood of false 
negatives, which is especially concerning in clinical 
settings where missing a fracture could have 
catastrophic consequences. Furthermore, a high false 
positive rate (FP=39) means that many non-
fractured cases were incorrectly classified as 
fractures. This could lead to unnecessary medical 
interventions, such as further diagnostic imaging or 
unnecessary treatment. This impacts the precision of 
the model negatively, as it tends to over-predict 
fractures. 

When comparing these models, EfficientNetB3's 
excellent accuracy, together with its balanced 
performance across other evaluation parameters, 
makes it the best model for the task of detecting 
bone fractures. Its compound scaling technique is 
very advantageous, allowing the model to scale 
adequately without disproportionately increasing 
computational costs, resulting in not just accuracy 
but also efficiency. 

ResNet-152, while somewhat less accurate than 
EfficientNetB3, is still a highly competitive option. Its 
use of residual connections enables the creation of 
deeper networks while avoiding the degradation 
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problem, making it an excellent choice for 
applications needing in-depth feature extraction. 

CNN's performance, which closely matches that 
of ResNet-152, demonstrates that simpler designs 
can still produce great results, especially when 
combined with appropriate training procedures and 
sufficient data. However, for clinical applications 
where even minor improvements in accuracy are 
crucial, the sophisticated topologies of ResNet-152 
and EfficientNetB3 are preferred. 

DenseNet121's performance, while respectable, 
suggests that its dense connection pattern, which is 
intended to increase gradient flow and feature reuse, 
may not provide significant advantages over other 
models in this application. Finally, AlexNet's 
performance highlights the importance of deeper 
and more sophisticated models in modern medical 
imaging tasks, where the capacity to collect fine-
grained information is critical. 

EfficientNetB3 is the best model for the Bone 
Fracture Multi-Region X-ray Dataset, with the 
highest accuracy and most balanced metrics. Its 
architectural advances allow it to excel at this 
complicated task while being computationally 
efficient. Given the importance of precise diagnosis 
in clinical settings, EfficientNetB3's performance 
makes it the best option for bone fracture detection. 
However, ResNet-152 and CNN are also viable 
options, especially in cases where computational 
resources are limited. The study's findings highlight 

the necessity of using advanced and well-optimized 
models for medical imaging tasks, where even little 
increases in accuracy might have huge therapeutic 
effects. 

To evaluate the statistical significance of the 
performance differences between the best-
performing model, EfficientNetB3, and other CNN 
models, we employed a paired t-test. This method 
compares the paired performance metrics by 
calculating the t-statistic (Goodfellow, 2016) and 
testing it against a student’s t-distribution with a 
specified degree of freedom. If the resulting p-value 
is below the commonly accepted significance 
threshold of 5%, the null hypothesis—stating that 
there is no significant difference between the model 
performances—is rejected, confirming a significant 
difference. Conversely, a p-value above the threshold 
indicates that the null hypothesis cannot be rejected, 
suggesting similar performance between the models. 
This statistical analysis was applied to compare the 
metrics of EfficientNetB3 with each CNN model, as 
presented in Table 7. P-values below the 5% 
threshold are highlighted, indicating statistically 
significant differences. The results provide strong 
evidence that the performance improvements of 
EfficientNetB3, particularly in terms of metrics like 
accuracy, precision, and recall, are statistically 
significant compared to other custom CNN and 
transfer learning models. 

 
Table 7: Results of the paired t-test (t-statistic and p-value) comparing the performance of the best ensemble model with 

other base CNN models 
Models Accuracy Precision Recall F1-score 

CNN (-6.53, 5.32e-05) (-5.77, 0.0001) (-7.73, 1.45e-05) (-5.29, 0.0002) 
AlexNet (-36.6, 2.07e-11) (-38.16, 1.44e-11) (-14.86, 6.10e-08) (-22.84, 1.84e-09) 

DenseNet-121 (-68.27, 7.83e-14) (-21.64, 2.25e-09) (-28.79, 1.78e-10) (-1.89, 0.045) 
ResNet-152 (-7.87, 1.24e-05) (-0.81, 0.21) (-5.84, 0.0001) (-3.04, 0.006) 

 

Fig. 4 depicts the training and validation curves 
for accuracy and loss using the custom CNN model, 
and the best-performing pre-trained model 
EfficientNetB3 with fine-tuning. Furthermore, to 
provide a comprehensive comparison of our 
proposed EfficientNetB3 model’s performance for 
bone fracture detection with existing works in the 
literature, we present results from several studies 
that have employed different deep learning models. 
These works focus on detecting fractures using X-ray 
images, with performance metrics such as accuracy, 
precision, recall, and F1-score as key indicators. 
Table 7 summarizes the results from existing 
literature compared with our study. 

Our EfficientNetB3 model outperformed other 
models in the study, achieving an impressive 
accuracy of 99.20%. This highlights the effectiveness 
of the EfficientNet architecture and its ability to 
accurately detect bone fractures in X-ray images. The 
precision of 98.53% and perfect recall of 100% 
indicate that the model excels at correctly identifying 
fractures while minimizing false positives and false 
negatives. When comparing our results to those of 
existing studies, our model consistently outperforms 
them across all metrics. For example, Gan et al. 

(2019) used an InceptionV4 model and achieved an 
accuracy of 93.0%, which is 6.2% lower than our 
EfficientNetB3 model. Similarly, Nishiyama et al. 
(2021) applied a custom CNN model and reported an 
accuracy of 84.5%, demonstrating a noticeable gap 
in performance. The YOLO-based deep learning 
model, evaluated by Son et al. (2021), shows the 
weakest recall value in comparison, with a precision 
of 97.5%, highlighting the limitations of the models 
used by the authors compared to modern fine-tuned 
models like EfficientNetB3. Furthermore, while U-
Net and ResNet-50 from Wang et al. (2022) provided 
relatively competitive results with 96.40% accuracy 
and 97.60% recall, our proposed model still 
demonstrated a significant improvement. The 
comparison of our model with existing methods 
confirms its cutting-edge performance in bone 
fracture detection. This suggests that our model has 
the potential to be a valuable tool in clinical settings, 
assisting healthcare professionals in accurately 
diagnosing fractures. By providing more accurate 
and reliable predictions, it has the potential to 
enhance diagnostic workflows, reduce human errors, 
and improve patient care. 
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(a) CNN model 

  
(b) EfficientNetB3 

Fig. 4: Training and validation curves for accuracy and loss using: (a) the custom CNN model; (b) the best performing pre-
trained model EfficientNetB3 with fine-tuning 

 

4.2. Discussions 

4.2.1. Interpretation of results 

The performance of the deep learning models 
varied significantly, demonstrating the importance 
of model selection and architecture for bone fracture 
detection. The custom CNN, while showing 
promising results, was outperformed by some of the 
pre-trained models, suggesting that leveraging pre-
trained knowledge from large-scale datasets can be 
beneficial. 

The results indicate that model architecture, 
complexity, and optimization strategies significantly 
influenced performance. EfficientNetB3 
outperformed the other models due to its scalable 
architecture, which balances depth, width, and 
resolution, allowing it to extract detailed and 
complex features from X-ray images. Its superior 
performance, particularly in recall (100%) and F1-
score (99.26%), highlights its ability to capture 
subtle patterns in the dataset without overfitting. Its 
ability to perfectly detect all fractures with very few 
false positives demonstrates its potential for real-
world deployment in healthcare settings. ResNet-
152 also performed exceptionally well due to its 
deep residual architecture, which mitigates the 
vanishing gradient problem by allowing information 
to flow across layers via skip connections. Its higher 
layer depth enables better feature extraction, which 
is why it outperformed simpler models like the 
custom CNN and AlexNet. However, the presence of a 
few false negatives shows there is room for 
improvement in recall. Despite these few errors, the 

model's effectiveness in minimizing false positives 
and its overall robust performance makes it a 
valuable tool for clinical use, though further 
refinements could enhance its fracture detection 
capabilities. 

The custom CNN showed competitive 
performance, especially in terms of precision 
(97.60%) and recall (98.36%), likely due to its 
design being tailored specifically to the dataset. 
Achieving such performance with only three 
convolutional layers highlights the strength of well-
designed, relatively simple CNN architectures for 
specific tasks like bone fracture detection. This result 
underlines the model's robustness and practicality, 
making it an effective tool for fracture detection even 
in resource-constrained environments. However, it 
lacked the deeper architecture of models like 
ResNet-152, limiting its ability to capture more 
complex features. AlexNet struggled relative to the 
others, likely because its architecture was designed 
for a broader image classification task and lacked the 
depth and refinement of more modern architectures. 
Despite decent recall (95.15%), its lower precision 
(86.78%) indicates that it is prone to false positives, 
which may arise from an inability to fully capture the 
details of fracture patterns in medical imaging data. 
Given that AlexNet is a simpler model, it may not be 
well-suited to the complexity of bone fracture 
detection. It might have benefitted from more 
advanced architectures like ResNet or EfficientNet, 
which tend to capture more intricate features in 
medical images. DenseNet-121 achieved respectable 
performance, leveraging its dense connectivity to 
enhance feature reuse. However, its moderate 
complexity led to marginally lower scores compared 
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to ResNet-152 and EfficientNetB3, as it may not have 
been able to capture the same level of detail in the X-
ray images. 

The compound scaling approach of EfficientNet 
has recently received interest because it achieves 
balanced accuracy and model size. The authors of 
Wang et al. (2022) combined U-Net with ResNet-50 
for CT image fracture detection, which proved 
effective for both sensitivity and specificity. This 
study demonstrates that successful medical use of 
the framework is reliant on fine-tuning procedures 
shaping pre-trained networks. The authors stated 
that deep learning models with high performance 
need explanation techniques to establish credibility 
among medical professionals. 

4.2.2. Implications for clinical practice 

The results of this investigation have various 
implications for clinical practice and future research.  
The outstanding performance of EfficientNetB3 and 
ResNet-152 suggests that deep architectures with 
optimized parameter scaling are well-suited for bone 
fracture detection. This has significant implications 
for clinical practice, as accurate and reliable models 
can reduce diagnostic errors, enabling faster and 
more accurate treatment decisions. The high recall 
achieved by EfficientNetB3 implies that it could be 
particularly useful in clinical settings where missing 
fractures (false negatives) can have serious 
consequences. 

The strong performance of X-ray image analysis 
by CNN-based models like ResNet and EfficientNet 
presents several obstacles when it comes to model 
generalization across different datasets. Studies 
commonly face limitations because their datasets 
contain a restricted number of samples while being 
unbalanced, which produces biased classification 
outcomes. The resolution of these problems depends 
on acquiring larger and more diverse datasets that 
require enhancement through preprocessing 
methods. The process of integrating AI diagnosis 
equipment into healthcare practice demands 
regulatory validation and confirmation by 
conducting research at multiple facilities. 

This research reinforces the potential of deep 
learning models in the effective diagnosis of 
fractures characterized by minimal errors and 
quicker workflow in radiological processes. The 
EfficientNetB3 model achieved 99.20% accuracy in 
medical imaging tasks because of its compound 
model scaling method. The high recall value of 100% 
indicates the model's ability to identify all fractures 
while ensuring no cases of missed diagnoses in 
emergency medicine contexts. Additional 
improvements need to take place to enhance 
precision because the current rate of false positives 
leads to unnecessary follow-up examinations. 

AI-based diagnostic tools need to integrate 
smoothly with medical imaging systems that 
currently exist for clinical practice deployment. Deep 
learning models function as decision-support tools 
that radiologists can use to obtain additional 

opinions when reading scans during busy periods of 
operation. Jones et al.’s (2020) study reveals that 
using AI systems enhances fracture detection 
proficiency, adding to the radiologists' professional 
expertise and empowering them to handle complex 
medical interpretations. 

For future research, these findings highlight the 
importance of leveraging advanced architectures 
that can effectively scale based on available data and 
hardware.  The effectiveness of transfer learning 
demonstrated in this research also suggests that pre-
trained models, fine-tuned on medical datasets, 
could reduce the need for large annotated medical 
datasets, which are often difficult to obtain. 

The choice of model should be carefully 
considered based on factors such as accuracy, 
computational efficiency, and interpretability. The 
effectiveness of deep learning models greatly 
depends on the quality and volume of the training 
data available. Efforts should be made to collect and 
annotate large and diverse datasets.   Creating deep 
learning models that can be easily interpreted is 
crucial for establishing credibility and 
comprehending the reasoning behind the models' 
predictions. Future studies need to concentrate on 
creating methods that clarify the reasoning behind 
the choices made by these models. 

4.2.3. Limitations 

There are several limitations in this study. The 
limited size of the dataset used in this study may 
restrict the model's ability to accurately predict bone 
fractures in a broader population. A larger dataset 
would likely improve the model's generalizability 
and enhance its clinical applicability. Although data 
augmentation was employed to artificially increase 
the dataset size, this might not accurately represent 
the full spectrum of data observed in the real world. 
Additionally, models such as AlexNet and DenseNet-
121 may have underperformed due to their lack of 
architectural complexity or misalignment with the 
specific task of fracture detection. Lastly, the study 
may be affected by class imbalance, where the 
distribution of fractured vs. non-fractured images 
could introduce biases that affect model 
performance. 

The AI-supported system used for diagnosing 
fractures faces various obstacles that need to be 
mitigated for worldwide adoption for clinical 
purposes. The problem of insufficient data variety 
poses a major challenge. This study used images 
from a single repository as its dataset, although the 
dataset fails to demonstrate a complete 
representation of actual clinical images. The future 
of research requires multiple medical facility image 
collections that integrate images from various 
medical equipment to strengthen model 
performance. 

Deep learning prediction systems face difficulties 
because their results are not easily understandable 
to medical personnel. Medical professionals need 
explainable AI tools to understand the decision 
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processes of their models. The use of Grad-CAM and 
attention map methods should be implemented to 
display which X-ray image regions most influence 
the classification determination. AI-dependent 
fracture diagnosis techniques garner increased 
acceptability from healthcare professionals due to 
their augmented interpretation abilities. 

The outstanding performance of EfficientNetB3 is 
difficult to use in real-time applications because of 
its high computational requirements. Increased 
optimization of edge computing models or the 
creation of lighter models like MobileNet-based 
frameworks will enhance their deployment 
practicality in clinical settings with limited 
resources. 

4.2.4. Future work 

Our goal is to overcome some of these limitations 
by using larger and more varied datasets to enhance 
the models' ability to generalize. Furthermore, 
exploring ensemble techniques, which combine 
predictions from multiple models, could enhance 
performance further by leveraging the strengths of 
various architectures. We also plan to explore the 
interpretability of these models, particularly in 
clinical settings. Explainable AI techniques could be 
applied to highlight which areas of the X-ray images 
are most indicative of fractures, offering insights to 
radiologists and improving trust in the AI-driven 
decision-making process. Combining X-ray images 
with other modalities, such as clinical data or patient 
history, can potentially improve the accuracy of bone 
fracture detection. Finally, optimizing deep learning 
models for deployment in real-world clinical 
environments remains an important area of future 
work. This includes focusing on resource efficiency, 
reducing inference time, and ensuring compatibility 
with clinical workflows. 

5. Conclusions 

In this study, we evaluated several deep-learning 
models for detecting bone fractures in X-ray images, 
including a custom CNN model and four pre-trained 
models (AlexNet, DenseNet121, ResNet152, and 
EfficientNetB3). Our analysis revealed that 
EfficientNetB3 outperformed the other models by a 
significant margin, achieving an accuracy of 99.20%. 
This demonstrates its superior ability to generalize 
to the fracture detection problem, making it a 
promising candidate for real-world clinical 
applications. The custom CNN model also exhibited 
strong performance, while AlexNet and 
DenseNet121 showed comparatively lower results, 
likely due to differences in model architecture and 
complexity. 

These findings emphasize the effectiveness of 
deep learning, particularly fine-tuned pre-trained 
models, in medical imaging tasks such as fracture 
detection. The results hold potential for improving 
clinical practice by enabling more accurate and 
timely diagnoses, ultimately aiding radiologists and 

healthcare professionals in their decision-making 
processes. In summary, our study highlights the 
significance of using advanced deep-learning models 
for fracture detection and paves the way for future 
research focused on refining these methods and 
exploring their broader clinical applications. 
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