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Global warming is a major environmental issue that raises the average air 
temperature on Earth's surface. Human activities have played a key role in 
increasing greenhouse gas emissions, which contribute to higher 
temperatures and climate change. Methane is the second most significant 
greenhouse gas driving global warming. This study focuses on predicting 
global methane emissions using the SARIMA (Seasonal Autoregressive 
Integrated Moving Average) statistical model and three machine learning 
models: MLP (Multilayer Perceptron), LSTM (Long Short-Term Memory), and 
GRU (Gated Recurrent Unit). Two hybrid models, SARIMA-MLP and SARIMA-
GRU, were also applied. The models’ accuracy was assessed using statistical 
metrics, including Mean Square Error (MSE), Root Mean Square Error 
(RMSE), and Mean Absolute Percentage Error (MAPE). The findings show 
that the SARIMA model outperformed the standalone machine learning 
models. However, the hybrid models demonstrated better forecasting 
performance, with SARIMA-GRU emerging as the most effective model for 
predicting global methane emissions. The forecast results indicate a 
continuous rise in methane emissions over time. 
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1. Introduction 

*Global warming is a critical environmental 
problem that increases the average atmospheric 
temperature on the Earth's surface. This trend began 
with the Industrial Revolution in the late 18th 
century. While temperature changes occur naturally 
over certain periods, they have increased due to 
human activities from the Industrial Revolution, 
including the emissions of greenhouse gases (Nunes, 
2023). The concentration of greenhouse gases has 
significantly increased due to these activities, leading 
to climate imbalance and global warming. Major 
sources of greenhouse gases from human activity 
include carbon dioxide (CO2) and methane (CH4). 
Methane is the second most impactful greenhouse 
gas contributing to global warming. It has 
contributed to approximately 30% of global 
temperature increases since the Industrial 
Revolution (IEA, 2022). Methane emissions originate 
from various sources, primarily burning fossil fuels 
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for power generation and transportation. Reducing 
methane emissions is essential to mitigate climate 
change. Many initiatives have been implemented in 
the past few years to reduce methane emissions. The 
Global Methane Pledge, which was launched in 
November 2021 during COP26 and signed by 
countries representing 45% of global methane 
emissions, intends to decrease global methane 
emissions by 30% by 2030. Saudi Arabia has 
committed to this pledge as part of its ambition to 
create a clean, green future. In 2021, Saudi Arabia 
introduced the Middle East Green Initiative (MGI) to 
address climate change in the Middle East and North 
Africa region (MENA). 

In October 2023, MENA nations agreed to 
collaborate to reduce methane emissions. 
Furthermore, corporations in the MENA region have 
pledged to support Aiming for Zero, an Oil and Gas 
Climate Initiative program to reduce the industry's 
methane emissions (OGCI, 2023). Egypt and Iraq 
intend to regulate and monitor methane emissions 
from the oil and gas industries. Meanwhile, the Gulf 
Cooperation Council (GCC) countries have pledged to 
achieve zero emissions by 2050 or 2060. The UAE 
and Saudi Arabia have already taken steps to limit 
emissions by banning the burning of methane and 
other gases (Rousset and Araissi, 2024).  

Given the increasing levels of greenhouse gases in 
the atmosphere, it is critical to develop models that 

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mhabadi@kau.edu.sa
https://doi.org/10.21833/ijaas.2025.04.005
https://orcid.org/0000-0002-6392-1697
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2025.04.005&amp;domain=pdf&amp


Habadi et al/International Journal of Advanced and Applied Sciences, 12(4) 2025, Pages: 34-43 

35 
 

can reliably forecast methane emissions over time. 
These models provide insights that enable 
governments and communities to take action to 
reduce emissions. This study investigates global 
methane emissions using different time series 
forecasting methods to improve our understanding 
of methane emissions and predict their trends. 
However, forecasting time series data is complex due 
to linear and nonlinear patterns in the data. While 
the Autoregressive Integrated Moving Average 
(ARIMA) model is widely employed for time series 
forecasting, it has difficulty handling nonlinear 
patterns. In contrast, machine learning algorithms 
excel at detecting patterns in datasets. To address 
the complexity of real-world data, a hybrid strategy 
combining linear and nonlinear models can improve 
forecasting accuracy (Nawi et al., 2021). As a result, 
this study aims to develop and analyze two hybrid 
ARIMA models based on ANN (artificial neural 
network) and RNN (recurrent neural network) to 
improve predictions of methane emissions. 

Previous studies have successfully used ARIMA 
and machine learning algorithms to forecast 
greenhouse gas emissions. A study by Habadi and 
Tsokos (2017) utilized multiplicative SARIMA 
models to forecast atmospheric CO2 levels in the 
Middle East and the temperature in Saudi Arabia. 
The performance of the two SARIMA models was 
assessed using different statistical measures, and the 
results indicate that both models have good 
forecasting performance. 

Chowdhury et al. (2021) conducted a study 
utilizing ANN models to forecast CH4 and CO2 
emissions in Bangladesh based on agricultural data 
collected between 1972 and 2019. They 
experimented with various combinations of neurons 
and layers to identify the effective ANN model for 
emission forecasting. The models' performance was 
evaluated using the sum of squared errors (SSE) and 
RMSE. The results revealed that an ANN model with 
a layer consisting of three neurons and employing a 
sigmoid activation function achieved an impressive 
prediction accuracy rate of 95%. 

A study by Kumari and Singh (2023) aimed at 
predicting CO2 emissions in India using statistical, 
machine learning, and deep learning methods. It was 
concluded that LSTM, SARIMAX, and Holt-Winters 
were identified as the best performing models out of 
six based on nine evaluation criteria. The results 
indicated that LSTM effectively predicted CO2 

emissions with the lowest error value. 
Another study by Diaz et al. (2023) used the 

univariate ARIMA, the multivariate vector 
autoregressive (VAR), and ARIMA with exogenous 
inputs (ARIMAX) to forecast the methane 
concentrations of several coal mines in the USA. The 
effectiveness of these models was assessed and 
compared using various statistical metrics like 
RMSE, MAE, and MAPE. The results indicated that 
multivariate models have higher forecasting 
accuracy by incorporating multiple factors. The VAR 
model outperformed both ARIMA and ARIMAX 
models in forecasting methane concentrations, and it 

successfully captured the dynamic interactions of 
environmental variables with methane emissions 
over time. 

In a study conducted by Luo et al. (2024), a 
multivariate LSTM model was used to examine the 
impact of temperature, wind speed, and wind 
direction on the predictions of methane emissions 
based on a multivariate climate dataset spanning 
from 2010 to 2021 in Alberta. The findings suggest 
that climate variables improve the predictive 
abilities of the LSTM model, with temperature 
showing a greater impact on enhancing predictive 
performance compared to wind speed and direction 
in terms of mean absolute error (MAE) and RMSE. 

Combining various models has become a popular 
strategy for improving forecast accuracy since the 
well-known M competitions. Makridakis et al. (1982) 
conducted these competitions to evaluate and 
compare the efficiency of different time series 
forecasting methods. It has been observed that 
combining forecasts from different models 
frequently improves forecasting accuracy. 

Zhang (2003) proposed a hybrid model that 
combines ARIMA and ANN models to efficiently 
capture relationships in time series data. This 
approach is useful because time series data often 
shows linear and nonlinear patterns. Experiments 
with datasets have shown that this hybrid model 
considerably improves forecasting accuracy. 

In a study conducted by Meng et al. (2022), three 
deep learning models (simple RNN, LSTM, and GRU) 
and a novel approach that combines traditional time 
series analysis with deep learning models were 
utilized to forecast methane concentrations of coal 
mines in Suzhou, China. The performance of the 
models was evaluated through criteria such as the 
RMSE and R². The results indicated that the GRU 
model outperformed the RNN and LSTM models. The 
study demonstrated that the proposed combining 
method significantly reduced the prediction errors 
and enhanced the forecasting accuracy. 

Wen et al. (2023) created a hybrid ARIMA-LSTM 
model using an inverse error combination method to 
forecast CO2 emissions in China and its three regions 
(east, west, and central). This model was compared 
with four models: Linear regression (LR), Back 
Propagation Neural Network (BPNN), ARIMA, and 
LSTM. The results show that the hybrid ARIMA-
LSTM model surpasses the others in forecasting CO2 
emissions, suggesting its effectiveness in emissions 
prediction applications. 

Another study by Sergeev et al. (2024) proposed 
a hybrid model that combines wavelet 
transformation and the LSTM model to predict the 
methane concentration on the surface of Pelee Island 
in the polar region. The performance of the models 
was checked using different criteria, such as RMSE 
and MAE. Wavelet transform was applied to 
decompose data into several components, which 
helped identify patterns and fluctuations. The results 
showed that the hybrid model significantly improved 
forecasting accuracy compared to other models. 
Recent research highlights the advantages of hybrid 



Habadi et al/International Journal of Advanced and Applied Sciences, 12(4) 2025, Pages: 34-43 

36 
 

models over single models in time series forecasting. 
The hybrid methods have been applied successfully 
in various domains, such as electricity consumption 
(Guo et al., 2021), gold prices (Alsuwaylimi, 2023), 
crude oil prices (Alrweili and Fawzy, 2022), and 
wheat yields. 

2. Data set 

This study used the global methane emissions 
(CH4) dataset provided by the National Oceanic and 
Atmospheric Administration (NOAA). The dataset 
describes the globally averaged monthly mean 
atmospheric methane emissions in parts per billion 
(ppb). It consists of 474 observations over 40 years, 
from July 1983 to December 2022, as illustrated in 
Fig. 1. The data exhibit a positive trend and seasonal 
fluctuations, indicating non-stationarity in the series. 

Table 1 presents the descriptive statistics of the 
global methane emissions series. The average 
methane emission is 1774 ppb, with a standard 
deviation of 65. The lowest recorded methane 
emission was 1626 ppm in July 1983, while the 
highest recorded emission was 1925 ppm in 
December 2022. 

3. Materials and methods 

In order to forecast the global methane 
emissions, we applied one statistical model: SARIMA, 

three machine learning models: MLP, LSTM, and 
GRU, and two hybrid models: SARIMA-MLP and 
SARIMA-GRU. The dataset was divided into an 80% 
training set and a 20% testing set to assess the 
forecasting performance of the models. The training 
set was used exclusively for developing the models, 
while the test set was used to evaluate the models' 
performance. This paper implemented all SARIMA 
modeling using the R language (4.1.1), while neural 
network and hybrid models were constructed using 
Python via Jupyter Notebook. The Augmented 
Dickey-Fuller (ADF) and Kruskal-Wallis tests were 
used to assess the stationarity and seasonality of the 
series. The significance level was set at 5%. 

 

 
Fig. 1: Global methane emissions dataset 

 
Table 1: Descriptive statistics for methane emissions dataset 

Statistics Length Min Median Mean Max Standard deviation 
Value 474 1626 1775 1774 1925 65 

 

3.1. ARIMA 

The ARIMA model is important and widely used 
in time series forecasting due to its statistical 
features and the well-known Box-Jenkins method, 
which covers the entire modeling procedure for time 
series (Box and Jenkins, 1970). The ARIMA model 
comprises two main components: The 
autoregressive model and the moving average 
model.  The ARIMA model is based on the concept 
that the future value of a variable is a linear function 
of previous observations and random errors. The 
process of the ARIMA model includes the 
autoregressive, integrated, and moving average 
processes. The ARIMA model is represented as 
ARIMA(p, d, q), where p denotes the autoregressive 
model order, q indicates the moving average model 
order, and d represents the number of differences 
needed for stationarity. The ARIMA(p, d, q) model 
expressed as follow:  
 
𝑦𝑡 = 𝑐 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝜃1𝜖𝑡−1 +

𝜃2𝜖𝑡−2 + ⋯ + 𝜃𝑞𝜖𝑡−𝑞 + 𝜖𝑡                                                           (1) 

 

where, 𝑦𝑡  and 𝜖𝑡  are the actual observations and 
random errors at time 𝑡. 𝜙𝑖(𝑖 = 1,2, ⋯ , 𝑝) and 𝜃𝑖(𝑖 =
1,2, ⋯ , 𝑞) are the parameters of the autoregressive 
model and the moving average model, respectively. 

Stationarity is an important assumption in the 
ARIMA model. A stationary time series is one in 
which the mean and variance are constant over time. 
This study utilizes the ADF to assess stationarity in a 
time series. This test helps determine whether the 
time series is stationary or non-stationary. The null 
hypothesis assumes that the time series lacks 
stationarity, while the alternative hypothesis 
suggests it is stationary (Sirisha et al., 2022). When a 
time series is not stationary, techniques like 
differencing can be applied to make it stationary. 

The ARIMA model is also effective for analyzing 
seasonal data. A seasonal ARIMA (SARIMA) model is 
created by incorporating additional seasonal terms 
into the ARIMA model. It is represented as 
𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠 with s denoting the 
seasonal length. Seasonal components are denoted 
by uppercase letters, while nonseasonal components 
are represented by lowercase letters. P represents 
the seasonal autoregressive order, Q represents the 
seasonal moving order, and D signifies the seasonal 
differencing. The additional seasonal components 
are multiplied by non-seasonal components. To 
investigate seasonality in the series, the Kruskal-
Wallis test was employed with a null hypothesis that 
assumes no seasonality in the time series. 

The autocorrelation function (ACF) and partial 
autocorrelation function (PACF) plots are used to 
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determine the order of the ARIMA model. The ACF 
plot shows how time series values are correlated at 
time lags, while the PACF plot reveals these 
correlations after removing the effects of previous 
lags. The ACF and PACF values vary from -1 to 1, 
with 1 representing a perfect positive correlation, -1 
suggesting a perfect negative association, and 0 
indicating no correlation between the time series 
values. 

The ARIMA modeling process consists of several 
steps. Initially, the necessary difference degree to 
make the series stationary and the autoregressive 
and moving average orders are determined. 
Subsequently, model parameters are estimated, 
followed by diagnostic checks to evaluate the 
model's efficiency. Finally, the model is used to 
forecast future values. Fig. 2 provides an overview of 
the ARIMA modeling procedure. 

 

Identification: ensure stationarity and determine the 

order of the model.

Estimation: estimate the parameter of the model.

Diagnostic checking: check the residuals of the 

estimated ARIMA model. Is the model adequate?

Forecasting: use the fitted ARIMA model for 

forecasting

Yes

No

 
Fig. 2: Flowchart of the ARIMA model algorithm 

3.2. Machine learning models 

Machine learning is a subset of artificial 
intelligence that allows computers to autonomously 
learn from data and use various techniques to create 
mathematical models and predict outcomes based on 
historical information. It aims to forecast future 
events or circumstances unknown to the computer 
(Awad and Khanna, 2015). The term machine 
learning was first introduced by Samuel (1959), 
describing it as the "field of study that gives 
computers the ability to learn without being 
explicitly programmed." Deep learning, a type of 
machine learning, allows computer systems to 
improve through data and experience. It is 
commonly called artificial neural networks (ANNs), 
inspired by the human brain. ANNs have increasingly 
received much attention from a wide range of 
different science and socio-economic fields. They 
have been used successfully in several real-life 
applications. ANNs are general, flexible, and 
universal approximators that can estimate any 
nonlinear function. They can be categorized based on 
their topology into two main classes: Feed-forward 
neural networks and feedback neural networks. The 
feed-forward neural network is a common type that 

can be used for pattern recognition, classification, 
forecasting, and clustering. This network allows 
information to travel one way only. There are no 
feedback loops, i.e., the output of any layer does not 
affect its neurons. These networks tend to be 
straightforward in associating inputs with outputs. 
There are two types of feed-forward architecture: 
Single-layer perceptron and multilayer perceptron 
(MLP). A single-layer perceptron contains only input 
and output neurons. Unfortunately, a single-layer 
perceptron cannot detect complex or nonlinear 
relationships. 

In contrast, feedback networks, such as recurrent 
neural networks (RNNs), have feedback paths, 
enabling signals to move in both directions through 
loops. These loops help the system retain past input 
data to predict outcomes. RNN was designed to 
analyze a sequence of values one at a time, allowing 
it to handle sequential data such as time series data, 
which is particularly useful for forecasting time 
series (Graves et al., 2013). RNN processes any input 
sequence using its internal memory. The hidden 
layer contains a unique backward connection that 
produces a recurrence in the model, allowing the 
network to remember information from previous 
stages (Ceccarelli et al., 2017). The most common 
recurrent models are long short-term memory 
(LSTM) and gated recurrent unit (GRU). 

3.2.1. Multilayer perceptron (MLP) 

The MLP was developed to address the 
limitations of the single-layer perceptron 
(Shanmuganathan, 2016). This model is commonly 
utilized for forecasting time series data (Lee and Cho, 
2022). As illustrated in Fig. 3, MLP comprises three 
layers: One input layer, at least one hidden layer, and 
a single output layer. MLP trains the network using a 
learning technique known as backpropagation. Each 
neuron within the perceptron computes an output y 
by summing weighted input values using an 
activation function, as demonstrated in Eq. 2. 
 
𝑦 = 𝑓(∑ 𝑥𝑖

𝑛
𝑖=1 𝑤𝑖 + 𝑏)                                                                  (2) 

 

where, 𝑓 is a nonlinear activation function, 𝑥𝑖 refers 
to the input values, 𝑤𝑖 represents the connection 
weights, and b is the bias term. 

 

Input 1

Input 2

Input 3

Output

Input layer Hidden layer Output layer

Feedforward  
Fig. 3: Multi-layer perceptron architecture (Do et al.,2019) 
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3.2.2. Long short-term memory (LSTM) 

Hochreiter and Schmidhuber (1997) introduced 
LSTM to address the issue of vanishing gradients in 
simple RNNs, which improved learning capabilities. 
LSTM is recognized for its ability to remember long-
term dependencies by utilizing a cell state to store 
and facilitate information flow within the network. 
The cell state retains long-term memory, while the 
hidden state maintains short-term memory. The 
LSTM updates the information using three gates: The 
forget gate, the input gate, and the output gate. The 
cell state contains the memory content of an LSTM 
cell, while the gates ensure the protection and 
regulation of changes in this memory content. This 
unique architecture allows LSTM to retain 
information over extended periods through its chain 
structure of repeating cells. An overview of LSTM 
cells is depicted in Fig. 4, where 𝑥𝑡  represents the 
input at time 𝑡, 𝑐𝑡, and ℎ𝑡  are cell state and hidden 

state, respectively. 
 

sigmoid sigmoidsigmoid tanh

tanh

×

++

×

+×

forget 

gate

input 

gate

output 

gate

xt 

ht-1

ct-1 ct

ht

 
Fig. 4: LSTM cell (Krantz et al., 2019) 

3.2.3. Gated recurrent unit (GRU) 

Chung et al. (2014) created GRU to improve LSTM 
by minimizing the number of gates and using only 
two gates: A reset gate and an update gate. GRU is 
similar to LSTM, except the forget and input gates 
are integrated into a single updating gate. 
Consequently, it has fewer trainable parameters. 
This makes it easier to compute and apply. Fig. 5 
shows the GRU unit construction, which includes an 
update gate 𝑧𝑡 , a reset gate 𝑟𝑡 , and a current memory 

content ℎ̃𝑡. At each time step t, the update gate takes 
the input 𝑥𝑡  and the output from the previous unit 
ℎ𝑡−1, feeding it through a sigmoid function. The 
update gate solves the vanishing gradient problem 
by learning the model how much information to pass 
forward. The reset gate dictates how much of the 
previous information should be forgotten. It is also 
computed using the current input and the previous 
hidden states (Dutta et al., 2020). 

3.3. Hybrid model 

Hybrid methods can improve time series 
forecasting by combining different statistics and 
machine learning models. Statistical and machine 
learning models have significant advantages for time 
series forecasting. However, neither of these 

approaches is adequate to model a real-world time 
series. Table 2 shows the strengths and limitations of 
each method. The basic idea behind hybrid methods 
is that they combine the strengths of the two 
approaches to compensate for the limits of one. 
Therefore, the hybrid methods are motivated by the 
following considerations: First, it is difficult to 
determine whether a time series is linear or 
nonlinear in real-world situations. Second, time 
series data is rarely purely linear or nonlinear in the 
real world. They typically include both patterns. 
Third, no method is ideal in every circumstance 
because real-world data is frequently complicated, 
so no single model can accurately represent all 
patterns in the data. 

 

sigmoid sigmoid tanh

1-

× +

× ×

 reset

gate rt

update 

gate zt

xt

ht-1

ht

 
Fig. 5: GRU cell (Li et al., 2021) 

 

According to Zhang (2003), the hybrid models 
can be expressed as 
 
𝑦𝑡 = 𝐿𝑡 − 𝑁𝑡                                                                                     (3) 
 

where, 𝐿𝑡  and 𝑁𝑡  represent the linear and nonlinear 
components, respectively. The residuals which 
contain  

only nonlinear relationships can be calculated by 
subtracting the estimated values of the linear 
modeling procedure from the actual observation as 
follows: 
 
𝑒𝑡 = 𝑦𝑡 − �̂�𝑡                                                                                      (4) 
 

where, statistical models can conduct the linear 
modeling procedure, and machine learning models 
can estimate the residual. Therefore, the estimated 
value �̂�𝑡  can be represented as the sum of the 
estimated values of the statistical and machine 
learning models, as follows:  
 
�̂�𝑡 = �̂�𝑡 − �̂�𝑡                                                                                     (5) 

3.4. Model evaluation 

Different statistical metrics were utilized to 
assess the performance of the time series forecasting 
models. Various error measurements, such as mean 
square error (MSE), root mean square error (RMSE), 
and mean absolute percentage error (MAPE), were 
employed. Lower error values indicate a stronger 
correlation between observed and forecast values. 
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The mathematical formulas for these error 
measurements are given in the following equations, 
where 𝑦𝑖  is the actual observation, �̂�𝑖  is the fitted 
value, and 𝑛 refers to the number of observations. 
 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1                                                              (6) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1                                                       (7) 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝑦𝑖−�̂�𝑖

𝑦𝑖
|𝑛

𝑖=1 × 100                                                    (8) 

 

Furthermore, the Akaike Information Criterion 
(AIC) is essential in problems related to evaluating 

statistical models. AIC calculates how much 
information the model loses; less information loss 
indicates greater model quality. AIC aims to select 
the model that best explains the variance with the 
fewest parameters. The model with the lowest AIC 
value is the most effective forecasting model. It can 
be expressed as 
 
𝐴𝐼𝐶 =  −2 log(𝐿) + 2𝑘                                                                (9) 
 

where, 𝐿 represents the likelihood of the model, and 
𝑘 is the total number of parameters.  

 
Table 2: Strengths and limitations of statistics and machine learning methods 

 Strengths Limitations 

Statistical methods 
Simple and flexible 

Work on a small data set 
Assume linearity 

Limited information capability 

Machine learning models 
No assumption of linearity 

Universal approximator 
Require large data sets 
Computational effort 

 

4. Results 

This section presents the modeling findings of the 
global methane emissions dataset along with the 
evaluation performance of the models. It starts with 
the SARIMA modeling results and then moves on to 
the machine learning modeling results. Finally, the 
results of the two hybrid models were presented and 
compared. 

4.1. Seasonal ARIMA (SARIMA) 

The results of the ADF and Kruskal-Wallis tests 
indicate clearly that the methane emissions data set 
is not stationary and has seasonal fluctuations. The 
series becomes stationary after first-order 
differencing (d = 1) and first-order seasonal 
differencing (D = 1). Tables 3 and 4 display the ADF 
and Kruskal-Wallis test results, respectively. 

 
Table 3: ADF test result 

 Training set 
First-order 
differencing 

Test statistics -2.8306 -21.854 
p-value 0.2264 0.01 

 
Table 4: Kruskal-Wallis test result 

 Training set 
First-seasonal 
differencing 

Test statistics 315.59 1.12 
p-value 0 0.9999 

 

The AIC criterion is used to determine the order 
of the SARIMA model accurately. As a result, 
SARIMA(2,1,2)(0,1,1)12 was the appropriate model 
for fitting the methane emissions data set with the 
lowest AIC value (AIC = 807.45). The optimal 
SARIMA for the methane emissions dataset can be 
presented as 
 
�̂�𝑡 = −0.4214𝑦𝑡−1 − 0.4138𝑦𝑡−2 + 1.7616𝜖𝑡−1 +
0.8259𝜖𝑡−2 − 0.8531𝜖𝑡−12 + 𝜖𝑡                                               (10) 
 

Fig. 6 illustrates the residual diagnostics of the 
SARIMA model. The residuals seem to have a normal 

distribution and fluctuate around a mean of zero. 
The ACF plot indicates that the residuals are not 
auto-correlated, which indicates that the 
SARIMA(2,1,2)(0,1,1)12 model is a well-fitting 
forecasting model of global methane emissions. The 
forecast values of the methane emissions for the next 
24 months show an increasing trend over time, as 
shown in Fig. 7, which depicts the fitted and forecast 
values of our SARIMA model. 

4.2. Machine learning models 

The machine learning models were fitted to 
forecast methane emissions. First, the data set was 
transformed into supervised learning using several 
previous time steps as inputs and then utilizing the 
next time step as output to the model. For model 
training, the MSE was used as the loss function, and 
the adaptive moment estimation (Adam) with a 
learning rate of 0.001 was used as the optimizer for 
the neural network models. Tuning the parameters 
of the models, including batch size, number of 
epochs, and validation split, was essential for the 
training process. Different batch sizes between 32 
and 128 were experimented with to balance 
computational efficiency and stability. All three 
models were trained using 500 epoch training runs, 
determined through experimentation and 
performance evaluation. Additionally, 10-20% of the 
dataset was allocated for validation to assess model 
performance on unseen data during the training 
process. Ultimately, the MLP model performed best 
with 500 epochs and a batch size of 64, while both 
the GRU and LSTM models excelled with 500 epochs 
and a batch size of 32.  

Different combinations of hidden layers and 
nodes were applied to achieve the best network 
structure, and the optimal neural network model 
was chosen according to trial and least MSE.  The 
appropriate MLP model for methane emissions data 
consists of three layers: An input layer with 16 nodes 
representing the input values of methane emissions, 
a hidden layer of 60 nodes, and an output layer with 
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one node. The LSTM model consists of three layers: 
An input layer with 16 nodes, a hidden layer with 30 
nodes, and a single output layer. In contrast, the GRU 
model comprises three layers: An input layer with 12 
nodes, a hidden layer with 57 nodes, and an output 
layer with only one node. Fig. 8 shows the test data 
along with the fitted values of the MLP, LSTM, and 
GRU models. The results reveal that the GRU model 

performed better than the LSTM model, which was 
utilized to create the hybrid model. Machine learning 
models were applied to forecast the global methane 
emissions for the next 24 months. The forecasting 
values of the three neural network models are 
shown in Fig. 9. The forecasting shows an increase in 
methane emissions. 

 

 

  
Fig. 6: Residuals diagnostics of the SARIMA model 

 

 

 
Fig. 7: Fitted and forecast values of the SARIMA model 

 

 

 

 
Fig. 8: Fitted values of machine learning models 

 

 
Fig. 9: Forecast values of machine learning models 
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4.3. Hybrid models 

To construct hybrid SARIMA-MLP and SARIMA-
GRU models, the residuals of the 
SARIMA(2,1,2)(0,1,1)12 model, which incorporates 
nonlinear parts, were fitted using individual MLP 
and GRU models. Then, the results of the nonlinear 
models were summed along with fitted values of the 
SARIMA model. The fitted and forecast values of the 
two hybrid models are shown in Figs. 10 and 11, 
respectively. We can see that the fitted values of the 
hybrid models closely match the actual test data, 
indicating that the hybrid models have good 
forecasting accuracy. Thus, according to the forecast 
of the hybrid models, methane emissions are 
expected to increase over time. 

 

 

 
Fig. 10: Fitted and forecast values of the SARIMA-MLP 

model 
 

 

 
Fig. 11: Fitted and forecast values of the SARIMA-GRU 

model 

4.4. Comparison  

Table 5 presents the evaluation results of the 
single and hybrid models using MSE, RMSE, and 
MAPE. The results show that the single SARIMA 
model outperformed the single machine learning 
models. The explanation is that methane emission 
data has a clear linear trend, and the statistical 
ARIMA model is known for capturing linear patterns 
in the data. However, the findings of the hybrid 
models indicated that combining the advantages of 
the SARIMA model in capturing linear patterns and 
machine learning models in capturing nonlinear 
patterns can significantly improve forecasting 
performance. As a result, the hybrid SARIMA-GRU 
model produced the most accurate forecasting 
results for the global methane emissions dataset. 

 
Table 5: Performance evaluation of models 
Model MSE RMSE MAPE 

SARIMA 0.7535 0.8680 0.0281 
MLP 2.7591 1.6610 0.0731 

LSTM 8.5620 2.9260 0.1286 
GRU 4.9858 2.2329 0.0952 

SARIMA-MLP 0.4082 0.6389 0.0280 
SARIMA-GRU 0.3516 0.5930 0.0260 

5. Discussion 

As the levels of methane emissions increase 
globally, it is essential to develop effective prediction 
models that can guide policymaking and implement 
strategies for reducing emissions. Accurate 
forecasting will enable decision-makers to 
implement timely and targeted interventions to 
mitigate the impact of methane on climate change. 
This study presented various forecasting methods to 
enhance the accuracy of methane emission 
prediction and assessed the strengths and 
limitations of different approaches.  

In this study, we employed one statistical model 
(SARIMA), three machine learning models (MLP, 
LSTM, and GRU), and two hybrid models (SARIMA-
MLP and SARIMA-GRU) to improve the prediction of 
global methane emissions and evaluated their 
efficacy. The experimental results reveal that the 
SARIMA model outperformed the single machine 
learning models in terms of forecasting accuracy. 
This finding suggests that the statistical properties of 
methane emissions were better captured by the 
SARIMA model, which considers seasonality and 
trend patterns in the data. Moreover, it is observed 
that the hybrid models, which combine the machine 
learning model with the statistical SARIMA model, 
can further improve the forecast accuracy. These 
hybrid models use the advantages of both statistical 
and machine learning methods, enabling the 
effective capture of complex relationships that may 
not be apparent in a single model. This highlights the 
potential of hybrid methods in handling forecasting 
challenges and emphasizes their capability to 
enhance predictive outcomes. 

The predicted increase in global methane 
emissions highlighted in this study confirms the 
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essential need for immediate action to reduce 
methane emissions, particularly for policymakers. 
This is crucial to address the issue, especially in high-
emissions fields. The findings of this study can also 
help set emission reduction targets in line with 
various global initiatives, such as the Paris 
Agreement and the Global Methane Pledge. More 
importantly, they can foster international 
cooperation to address the global challenge of 
methane emissions.  

To further enhance forecasting accuracy in future 
studies, multivariate prediction models can 
incorporate various influencing factors, including 
environmental, economic, and agricultural variables. 
This approach allows analysis of how different 
predictors, such as temperature, landfills, fossil fuel 
production, and livestock, impact methane 
emissions.  

Furthermore, raising public awareness of the 
critical role of methane in climate change is vital for 
gaining community support for emission reduction 
efforts. Consequently, the increase in methane 
emissions highlights the need for improved 
forecasting and emphasizes the crucial role of 
informed policymaking in the fight against climate 
change. 

6. Conclusions 

This study aimed to create single and hybrid 
forecasting models to forecast global methane 
emissions. The study utilized the statistical SARIMA 
model and machine learning methods, including 
MLP, LSTM, and GRU. Additionally, two hybrid 
models, SARIMA-MLP and SARIMA-GRU, were 
created. Various statistical metrics such as MSE, 
RMSE, and MAPE were used to evaluate and 
compare the model performances. The results 
indicated that hybrid models combining the 
strengths of SARIMA with machine learning 
outperformed individual models in forecasting 
methane emissions. The results highlighted that 
neither SARIMA nor a single machine learning model 
could accurately capture all data patterns. 
Additionally, a comparison between the two hybrid 
models revealed that the SARIMA-GRU hybrid model 
was most effective at forecasting methane emissions, 
which are expected to increase over time. This 
insight is significant for policymakers and leaders as 
it assists in crafting strategies to manage methane 
emissions, achieve reduction targets, and ensure 
better regulation of emissions. 
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