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This paper aims to explore the impact of viscosity and time on the spread of 
thermoelastic waves within a uniform and isotropic three-dimensional 
medium subject to a thermal load on its surface. This study utilizes the 
temperature-rate-dependent thermoelasticity based on the GN model, 
specifically applying the GN II model of generalized thermoelasticity, which 
does not account for energy dissipation. The normal mode analysis technique 
is employed to address the non-dimensional coupled field equations, yielding 
precise formulas for displacement, stress, temperature distribution, and 
strain. This issue is further illustrated by graphically depicting the field 
variables for a material similar to copper alongside the corresponding 
results. Comparative analyses of numerical data, with and without 
considering viscosity effects, suggest that the wave propagation speed will be 
limited. 
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1. Introduction 

*Two phenomena predicted by the classical 
uncoupled theory of thermoelasticity are 
incompatible with physical observations. First, there 
is no elastic term in this theory's heat conduction 
equation; second, the heat conduction equation is of 
the parabolic type, allowing heat waves to propagate 
at infinite speeds. Lord and Shulman (1967) 
developed a mathematical model of generalized 
thermoelasticity that is referred to as the ‘LS model.’ 
Biot (1956) introduced the classical dynamical-
coupled theory. This classical linear theory of heat 
conduction is based on Fourier’s law of thermal flux. 
This theory eliminated the paradox of infinite speed 
of propagation of thermal disturbances. Green and 
Lindsay (1972) developed a new model. Fourier's 
law of heat conduction remains unchanged in this 
model, but the classical energy equation and the 
constitutive equation have been modified by the 
addition of temperature rate-dependent terms. Two 
relaxation time parameters have been introduced in 
the GL model. This model is frequently referred to as 
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temperature-rate-dependent thermo-elasticity 
(TRDTE). First, there is no elastic term in this 
theory's heat conduction equation; second, the heat 
conduction equation is of the parabolic type, 
allowing heat waves to propagate at infinite speeds. 
The three theories of generalized thermoelasticity 
were studied by Green and Naghdi (1991, 1993). 
Hetnarski and Ignaczak (1993) examined five 
generalizations to the coupled theory and obtained a 
number of important analytic results. The main 
objective of these approaches is to advocate a theory 
in which the propagation of heat is modeled with a 
finite speed. The modified heat conduction equation 
in this theory is of hyperbolic type, ensuring finite 
speeds of propagation for heat and elastic waves. 
Dhaliwal and Sherief (1980) further extended this 
theory to general anisotropic media in the presence 
of heat sources. Sherief et al. (2002, 2015) conducted 
a number of studies on the Lord-Shulman theory. 
Because of the rapid development of polymer 
science and the plastics industry, as well as the 
widespread use of materials at high temperatures in 
modern technology, theoretical investigation and 
application in thermoviscoelastic materials have 
become a significant task for solid mechanics. 
Several studies (Ezzat et al., 2002; Abd-Alla et al., 
2003; Abd-Alla and Abo-Dahab, 2009; Deswal and 
Kalkal, 2011) Investigated wave propagation in 
linear thermovisco-elastic and electro-magneto-
thermoviscoelastic solids. Chandrasekharaiah 
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(1996) studied one-dimensional waves in a half-
space of a homogeneous and isotropic material 
within the frame of the linear theory of 
thermoelasticity without energy dissipation. 
Dhaliwal and Wang (1995) introduced a heat flux-
dependent theory of thermoelasticity, where the 
heat flux figures among the thermo-dynamical 
variables, with an evolution equation associated with 
it.  

A class of mixed initial boundary-value problems 
is defined for porous media. Hetnarski and Ignaczak 
(1996) investigated the propagation of soliton-like 
thermoelastic waves at low temperatures. Tang and 
Araki (1997) studied thermal relaxation and a one-
dimensional non-Fourier heat wave propagation. 
Chandrasekharaiah (1998) presented a review of 
temperature-rate dependent thermoelasticity 
theory, the recently developed theory of 
thermoelasticity without energy dissipation, and the 
new thermoelasticity theory. Kumar et al. (2017) 
investigated the propagation of thermoelastic 
harmonic plane waves under the two-temperature 
theory with two relaxation times. The one-
dimensional formulation allows a simple 
interpretation of the results and puts in evidence the 
wave nature of heat propagation. Yu et al. (2013) 
solved a one-dimensional problem in fractional 
order generalized electro-magneto-thermoelasticity. 
Yu et al. (2015) introduced a novel compact 
numerical method for solving the two-dimensional 
non-linear fractional reaction-sub diffusion 
equations. The importance of state-space analysis is 
recognized in fields where the time behavior of any 
physical process is of interest. The state-space 
approach is more general than the classical Laplace 
and Fourier transform theories. Consequently, state-
space theory is applicable to all systems that can 
analyzed by integral transforms in time and is 
applicable to many systems for which transform 
theory breaks down. One can refer to Ezzat (1994, 
2012) and Ezzat and Youssef (2010) for a survey of 
the state space approach in continuum mechanics. 
Abouelregal (2019) introduced a two-temperature 
thermoelastic model without energy dissipation, 
which included higher-order time derivatives and 
two phase-lags. Hendy et al. (2019) employed the 
state space approach to fractional two-dimensional 
problems of thermo-viscoelasticity order heat 
transfer. The one-dimensional model of the theory 
applied to Stokes' flow of unsteady incompressible 
fluid due to a moving flat plate in the presence of 
both heat sources and a transverse magnetic field. 
Aldawody et al. (2019) studied the Green Naghdi 
theory of thermomechanics of continua to derive a 
linear theory of MHD thermoelectric fluid with 
fractional order. This theory permits the propagation 
of thermal waves at finite speed. De Sciarra and 
Salerno (2014) studied thermodynamic functions in 
thermoelasticity without energy dissipation. Khamis 
et al. (2020) and Helmy et al. (2021). Studied the 
magneto thermoviscoelastic waves with Green-
Naghdi theory in a homogeneous isotropic hollow 
cylinder. Hendy et al. (2019) solved a two-

dimensional problem for thermoviscoelastic 
materials. See, also Amin et al. (2022) and El-Attar et 
al. (2022).  

The goal of this paper is to use normal mode 
analysis to investigate the aforementioned three-
dimensional problem, as well as to use the state-
space approach to examine the effects of viscosity on 
a three-dimensional thermoelastic homogeneous 
isotropic half-space solid body that is assumed 
stress-free with a surface that has undergone a 
thermal shock. Based on the GN model, without 
energy dissipation, the formulation for generalized 
thermoelasticity was developed. To obtain the 
precise analytical formulas for the variables under 
investigation, the normal mode analysis and state-
space technique were both applied. The findings of 
numerical calculations for a particular material and 
theoretical comparisons in the presence and absence 
of viscosity effects indicate that the speed of 
propagation will bounded. 

2. Mathematical model 

The equations of motion for a homogeneous 
isotropic thermally conducting viscoelastic material 
without body forces, the relations stress-strain-
temperature and strain-displacement, and the heat 
induction equation in the absence of a heat source 
can all be represented as: 
 

𝜁𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)                                                                         (1) 

𝑆𝑖𝑗 = 𝜆𝑢𝑧,𝑧𝜎𝑖𝑗 + 2𝜇𝜁𝑖𝑗 − 𝛾𝑇𝜎𝑖𝑗                                                    (2) 

𝑆𝑖𝑗,𝑗 = 𝜌
𝜕2𝑢𝑖

𝜕𝑡2                                                                                     (3) 

Γ ∇2𝑇 = 𝜌𝐶𝐸
𝜕2𝑇

𝜕𝑡2 + 𝛾𝑇𝑂
𝜕2𝑒

𝜕𝑡2                                                          (4) 

 

where, 
 

𝜆 = 𝜆𝑜(1 + 𝜆𝑜
∂

∂t
),   𝜇 = 𝜇𝑜(1 + 𝜇𝑜

∂

∂t
),   𝛾 = 𝛾𝑜(1 + 𝛾𝑜

∂

∂t
),  

𝛾𝑒 = (3𝜆𝑜 + 2𝜇𝑜)β𝑇 ,       𝛾𝑜 = (3𝜆𝑜𝛾𝑒 + 2𝜇𝑜𝜇𝑒)
β𝑇

𝛾𝑒
,    𝑖, 𝑗, 𝑘 =

𝑥, 𝑦, 𝑧  
 

where, 𝑆𝑖𝑗  stands for the components of the stress 

tensor, 𝜁𝑖𝑗  for the components of the strain tensor, 

λ, μ  Lame’s constants, 𝛾 = (3𝜆 + 2𝜇)β𝑇 is a material 
constant characteristic of the theory. β𝑇 is the 
coefficient of linear thermal expansion, 𝜌 is the 
density, 𝜎𝑥𝑦 is Kronecker delta, 𝑢𝑖  are the 

components of the displacement vector, 𝐶𝐸  is the 
specific heat at constant strain, (Γ >  0) is a material 
constant characteristic of the theory, 𝑇 is the 
temperature change, 𝑇𝑜 is the medium's presumed 
reference temperature where |𝑇/𝑇𝑜|  ≪  1, 𝑒 = 𝑒𝑧𝑧  is 
the cubical dilatation, 𝜆𝑜 , 𝜇𝑜, 𝛾𝑜 are viscoelastic 
constants. 

3. Formulation of the problem 

We consider a homogeneous isotropic solid 
material that is thermoviscoelastic and covers the 
space in three dimensions. 
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Ω = {((𝑥, 𝑦, 𝑧): 0 ≤  𝑥 <  ∞, −∞ <  𝑦 <  ∞, −∞

 <  𝑧 <  ∞}.  

 

It is in contact with a time-varying heat source on 
the surface x=0. Furthermore, it is assumed that the 
surface x=0 is assumed to be stress free. By 
employing the Cartesian coordinates (x, y, z), it is 
assumed that the initial conditions for all physical 
variables are homogeneous, and as a result, the 
displacement components have the form  𝑢𝑖  =
 (𝑢, 𝑣, 𝑤). Consequently, the following are the 
governing equations: 
 

𝜌 𝑢 ̈ = [(𝜆𝑒 + 2𝜇𝑒) + (𝜆𝑒𝜆𝑜 + 2𝜇𝑜 𝜇𝑒)
𝜕

𝜕𝑡
]𝑢,𝑥𝑥 +

𝜇𝑒 (1 + 𝜇𝑜
𝜕

𝜕𝑡
) (𝑢,𝑦𝑦 + 𝑢,𝑧𝑧) +   

 [(𝜆𝑒 + 2𝜇𝑒) + (𝜆𝑒𝜆𝑜 + 2𝜇𝑜 𝜇𝑒)
𝜕

𝜕𝑡
](𝑣,𝑥𝑦 + 𝑤,𝑥𝑧)− 𝛾𝑒(1 +

𝛾𝑜
𝜕

𝜕𝑡
) 𝑇,𝑥                                                                                            (5) 

𝜌 𝑣 ̈ = [(𝜆𝑒 + 2𝜇𝑒) + (𝜆𝑒𝜆𝑜 + 2𝜇𝑜 𝜇𝑒)
𝜕

𝜕𝑡
]𝑣,𝑦𝑦 +

𝜇𝑒 (1 + 𝜇𝑜
𝜕

𝜕𝑡
) (𝑣,𝑧𝑧 + 𝑣,𝑥𝑥) +   

  [(𝜆𝑒 + 2𝜇𝑒) + (𝜆𝑒𝜆𝑜 + 2𝜇𝑜 𝜇𝑒)
𝜕

𝜕𝑡
](𝑤,𝑦𝑧 + 𝑢,𝑦𝑥)− 𝛾𝑒(1 +

𝛾𝑜
𝜕

𝜕𝑡
) 𝑇,𝑦                                                                                           (6) 

𝜌 𝑤 ̈ = [(𝜆𝑒 + 2𝜇𝑒) + (𝜆𝑒𝜆𝑜 + 2𝜇𝑜 𝜇𝑒)
𝜕

𝜕𝑡
]𝑤,𝑧𝑧+

𝜇𝑒 (1 + 𝜇𝑜
𝜕

𝜕𝑡
) (𝑤,𝑦𝑦 + 𝑤,𝑥𝑥) +  

  [(𝜆𝑒 + 2𝜇𝑒) + (𝜆𝑒𝜆𝑜 + 2𝜇𝑜 𝜇𝑒)
𝜕

𝜕𝑡
](𝑣,𝑧𝑦 + 𝑢,𝑧𝑥)− 𝛾𝑒(1 +

𝛾𝑜
𝜕

𝜕𝑡
) 𝑇,𝑧                                                                                            (7) 

Γ ∇2𝑇 = 𝜌𝐶𝐸�̈� + 𝛾𝑒𝑇𝑂 ( 1 + 𝛾𝑜
𝜕

𝜕𝑡
) �̈�                                         (8) 

𝑆𝑥𝑥 = 2 𝜇𝑒 (1 + 𝜇𝑜
𝜕

𝜕𝑡
) 𝑢,𝑥 + 𝜆𝑒 (1 + 𝜆𝑜

𝜕

𝜕𝑡
) 𝑒 − 𝛾𝑒 (1 +

𝛾𝑜
𝜕

𝜕𝑡
) 𝑇                                                                               (9) 

𝑆𝑦𝑦 = 2 𝜇𝑒 (1 + 𝜇𝑜
𝜕

𝜕𝑡
) 𝑣,𝑦 + 𝜆𝑒 (1 + 𝜆𝑜

𝜕

𝜕𝑡
) 𝑒 − 𝛾𝑒 (1 +

𝛾𝑜
𝜕

𝜕𝑡
) 𝑇                                                                            (10) 

𝑆𝑧𝑧 = 2 𝜇𝑒 (1 + 𝜇𝑜
𝜕

𝜕𝑡
) 𝑤,𝑧 + 𝜆𝑒 (1 + 𝜆𝑜

𝜕

𝜕𝑡
) 𝑒 − 𝛾𝑒 (1 +

𝛾𝑜
𝜕

𝜕𝑡
) 𝑇                                                                                           (11) 

𝑆𝑥𝑦 =  𝜇𝑒 (1 + 𝜇𝑜
𝜕

𝜕𝑡
) (𝑢,𝑦 + 𝑣,𝑥)                                             (12) 

𝑆𝑥𝑧 =  𝜇𝑒 (1 + 𝜇𝑜
𝜕

𝜕𝑡
) (𝑢,𝑧 + 𝑤,𝑥)                                             (13) 

𝑆𝑦𝑧 =  𝜇𝑒 (1 + 𝜇𝑜
𝜕

𝜕𝑡
) (𝑣,𝑧 + 𝑤,𝑦)                                             (14) 

 

where, 
 

𝑒 = (𝑢,𝑥 + 𝑣,𝑦 + 𝑤,𝑧 ).                                                                (15) 

 

Moreover, a superimposed dot signifies time-
related differentiation, while a subscript comma 
indicates spatial derivatives. The following non-
dimensional parameters are defined, using the non-
dimensionalized equations above: 
 

(𝑥′ , 𝑦′, 𝑧′) =
1

𝐾
 (𝑥, 𝑦 , 𝑧)  ,   (𝑢′ , 𝑣′, 𝑤′) =

𝜆𝑒+2𝜇𝑒

𝛾𝑒𝑇𝑜𝐾
 (𝑢, 𝑣 , 𝑤),     

𝑡′ =  
𝐶1𝑡

𝐾
 

(𝜆𝑜
′ , 𝜇𝑜

′, 𝛾𝑜
′) =

𝐶1

𝐾
 (𝜆𝑜, 𝜇𝑜 , 𝛾𝑜),     𝜑 =

𝑇

𝑇𝑜
      , 𝑆𝑥𝑦

′ =
𝜒𝑥𝑦

𝛾𝑒𝑇𝑜
   

 

where, K is some standard length. By including the 
aforementioned non-dimensional parameters in Eqs. 
5–14 and utilizing the relation in Eq. 15, we obtain 
the following set of governing equations. 

 𝑢 ̈ = 𝛼 (1 + 𝜇𝑜

𝜕

𝜕𝑡
) ∇2𝑢 + 

[(1 − 𝛼) + {𝜆𝑜 (1 − 2𝛼) + 𝛼𝜇𝑜}
𝜕

𝜕𝑡
] 𝑒,𝑥 −  (1 + 𝛾𝑜

𝜕

𝜕𝑡
) 𝜑,𝑥′ 

                                                                                                         (16) 

𝑣 ̈ = 𝛼 (1 + 𝜇𝑜

𝜕

𝜕𝑡
) ∇2𝑣 + 

[(1 − 𝛼) + {𝜆𝑜 (1 − 2𝛼) + 𝛼𝜇𝑜}
𝜕

𝜕𝑡
] 𝑒,𝑦 − (1 + 𝛾𝑜

𝜕

𝜕𝑡
) 𝜑,𝑦′ 

                                                                                                         (17) 

𝑤 ̈ = 𝛼 (1 + 𝜇𝑜

𝜕

𝜕𝑡
) ∇2𝑤 + 

[(1 − 𝛼) + {𝜆𝑜 (1 − 2𝛼) + 𝛼𝜇𝑜}
𝜕

𝜕𝑡
] 𝑒,𝑧 − (1 + 𝛾𝑜

𝜕

𝜕𝑡
) 𝜑,𝑧′ 

                                                                                                         (18) 

C𝑇
2  ∇2𝜑 = �̈� + 𝜀 ( 1 + 𝛾𝑜

𝜕

𝜕𝑡
) �̈�                                                 (19) 

𝑆𝑥𝑥 = 2 𝛼 (1 + 𝜇𝑜
𝜕

𝜕𝑡
) 𝑢,𝑥 + (1 − 2𝛼) (1 + 𝜆𝑜

𝜕

𝜕𝑡
) 𝑒 −

(1 + 𝛾𝑜
𝜕

𝜕𝑡
) 𝜑,                                                                                (20) 

𝑆𝑦𝑦 = 2 𝛼 (1 + 𝜇𝑜
𝜕

𝜕𝑡
) 𝑣,𝑦 + (1 − 2𝛼) (1 + 𝜆𝑜

𝜕

𝜕𝑡
) 𝑒 −

(1 + 𝛾𝑜
𝜕

𝜕𝑡
) 𝜑,                                                                                (21) 

𝑆𝑧𝑧 = 2 𝛼 (1 + 𝜇𝑜
𝜕

𝜕𝑡
) 𝑤,𝑧 + (1 − 2𝛼) (1 + 𝜆𝑜

𝜕

𝜕𝑡
) 𝑒 −

(1 + 𝛾𝑜
𝜕

𝜕𝑡
) 𝜑,                                                                                (22) 

𝑆𝑥𝑦 = 𝛼 (1 + 𝜇𝑜
𝜕

𝜕𝑡
) (𝑢,𝑦 + 𝑣,𝑥)                                               (23) 

𝑆𝑥𝑧 = 𝛼 (1 + 𝜇𝑜
𝜕

𝜕𝑡
) (𝑢,𝑧 + 𝑤,𝑥)                                               (24) 

𝑆𝑦𝑧 = 𝛼 (1 + 𝜇𝑜
𝜕

𝜕𝑡
) (𝑣,𝑧 + 𝑤,𝑦)                                               (25) 

 

where, 𝜀 = 𝛾𝑒
2𝑇𝑜/[𝜌𝐶𝐸( 𝛾𝑒 + 2𝜇𝑒)] is the 

dimensionless thermoelastic coupling 
parameter,𝐶𝑇 =  𝑐3 ⁄  𝑐1 is the non-dimensional 
finite thermal wave speed of GN theory,  𝑐1 =

√( 𝛾𝑒 + 2𝜇𝑒)/𝜌 is the longitudinal wave speed,  𝑐3 =

√Γ/𝜌𝐶𝐸  is the finite thermal wave speed of G-N 

theory, and 𝛼 = 𝜇𝑒( 𝛾𝑒 + 2𝜇𝑒). 
Using Eqs. 16, 17, and 18 to differentiate them 

with regard to x, y, and z, respectively, we obtain: 
 

�̈� = [1 + {λ𝑜 − 2𝛼( 𝜆𝑜 − 𝜇𝑜)}
𝜕

𝜕𝑡
] ∇2𝑒 − (1 + 𝛾𝑜

𝜕

𝜕𝑡
) ∇2𝜑 . 

                                                                                                         (26) 
 

According to Dhaliwal and Sherief (1980), the 
invariant stress S will be taken to equal the mean 
value of the primary stresses 𝑆𝑖𝑗 , 
 

𝑆 =
1

3
(𝑆𝑥𝑥 + 𝑆𝑦𝑦 + 𝑆𝑧𝑧)                                                             (27) 

 

From Eqs. 20-22 and using Eqs. 15 and 27 we get: 
 

𝑆 = [1 −
4α

3
+ {( 1 − 2α)𝜆𝑜 +

2𝛼

3
𝜇𝑜}

𝜕

𝜕𝑡
] 𝑒 − (1 + 𝛾𝑜

𝜕

𝜕𝑡
) 𝜑 . 

                                                                                                         (28)  

4. Normal mode analysis 

By using normal modes analysis, the physical 
variables can be decomposed. 
 

[𝑢, 𝑣, 𝑤 , 𝑒, 𝜑 , 𝑆, 𝑆𝑖𝑗](𝑥 , 𝑦, 𝑧, 𝑡 ) = 

[ 𝑢∗, 𝑣∗, 𝑤∗ ,  𝑒∗, 𝜑∗ , 𝑆∗, 𝑆∗
𝑖𝑗](𝑥)exp [𝜔𝑡 + 𝑖(𝑎𝑦 + 𝑏𝑧)]    (29) 

 

where,  𝑢∗ ≅ 𝑢(𝑥, 𝑦, 𝑧, 𝑡), 𝑖 is the imaginary unit, 𝜔 
(Complex) is the time constant, and a, b are the wave 
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number in the x and y direction respectively. Using 
29 in the Eqs. 19, 26, 28, we have  
 
𝑑2𝜑∗

𝑑𝑥2
= 𝐴1 𝜑∗ + 𝐴2𝑆∗                                                                  (30) 

𝑑2𝜒∗

𝑑𝑥2
= 𝐴3 𝜑∗ + 𝐴4𝑆∗                                                                  (31) 

 

where, 
 

 𝐴1 = [𝑎2 + 𝑏2 +
𝜔2

𝐶𝑇
2 +

𝜀𝜔2(1+𝛾𝑜𝜔)2

𝛽𝐶𝑇
2 ],     𝐴2 =

𝜀𝜔2(1+𝛾𝑜𝜔)

𝛽𝐶𝑇
2  

𝐴3 = [
𝜔2(1+𝛾𝑜𝜔)

𝑑
−

𝜔2(𝑑−𝛽)(1+𝛾𝑜𝜔){𝛽+𝜖(1+𝛾𝑜𝜔)2}

𝑑𝛽𝐶𝑇
2   

𝐴4 = [𝑎2 + 𝑏2 +
𝜔2

𝑑
−

𝜀𝜔2(𝑑−𝛽)(1+𝛾𝑜𝜔)2

𝑑𝛽𝐶𝑇
2 ]  

𝑑 = [1 + {𝜆𝑜 − 2𝛼 (𝜆𝑜 − 𝜇𝑜)}𝜔], 𝛽 = [1 −
4𝛼

3
+

{(1 − 2𝛼)𝜆𝑜 +
2𝛼

3
𝜇𝑜} 𝜔]  

 

From Eqs. 30, 31,  𝜑∗ and 𝑆∗, then, 
 
𝑑2𝑉

𝑑𝑥2
= 𝐴 (𝜔)𝑉(𝑥)                                                                         (32) 

𝑉(𝑥) =  [
𝜑∗ 
𝑆∗ ]  ,        𝐴(𝜔) =  [

𝐴1 𝐴2

𝐴3 𝐴4
] 

 
 

We assume the non-dimensional boundary 
conditions as follows for the stress-free surface, 
where x=0. 

 
(i) The thermal boundary condition: 
 
𝑞𝑛 + 𝑣𝜑(𝑥, 𝑦, 𝑧, 𝑡) = 𝑟(𝑥, 𝑦, 𝑧, 𝑡), on 𝑥 = 0                          (33) 
 

where, 𝑞𝑛 is normal component of the heat flux 
vector, v is Biot’s number and 𝑟(0, 𝑦, 𝑧, 𝑡) represents 
the intensity of the applied heat sources on  𝑥 =  0. 
All the physical quantities are assumed to be 
bounded as 𝑥 →  +∞. From Eq. 33, we use the 
generalized Fourier’s law of heat conduction in the 
non-dimensional form, then,  
 

𝑞𝑛 = −
𝜕𝜑

𝜕𝑛
                                                                                      (34) 

 

From Eqs. 33, 34, and 29, we obtain: 
 
𝑣𝜑∗(𝑥) − 𝐷𝜑∗(𝑥) = 𝑟∗      𝑜𝑛     𝑥 = 0                                  (35) 
 

where, 𝐷 = 𝑑/𝑑𝑥 
 
(ii) Mechanical boundary condition that the 

bounding plane to the surface 𝑥 =  0 has no 
traction anywhere and by using Eq. 29, then, 

 
𝑆∗(0, 𝑦, 𝑧, 𝑡 ) = 𝑆𝑥𝑥

∗ (0, 𝑦, 𝑧, 𝑡 ) = 𝑆𝑦𝑦
∗ (0, 𝑦, 𝑧, 𝑡 ) =

𝑆𝑧𝑧
∗ (0, 𝑦, 𝑧, 𝑡 ) = 0  

𝑆∗(0) = 𝑆𝑥𝑥
∗ (0) = 𝑆𝑦𝑦

∗ (0 ) = 𝑆𝑧𝑧
∗ (0 ) = 0                             (36) 

5. State space approach 

Eq. 32, then (see Youssef (2010)): 
 

𝑉(𝑥) = exp [−√𝐴(𝜔)𝑥] 𝑉(0)                                                  (37) 

 

where, 
 

𝑉(0) =  [
φ𝑜

∗  
0

].                                                                               (38) 

 

From Eq. 36, Eq. 35, Eq. 38 and omitted the 
positive exponential part to obtain a bounded 
solution for large x, in the solution Eq. 37. Now, we 

shall first find the form of the matrix exp [−√𝐴(𝜔)𝑥].  

 
𝜆2 − (𝐴1 + 𝐴4)𝜆 + (𝐴1𝐴4 − 𝐴2𝐴3) = 0.                               (39) 
 

Then, the solution of Eq. 39 is: 
 

𝜆𝑗 =
(𝐴1+𝐴4)+(−1)𝑗√(𝐴1−𝐴4)2+4𝐴2𝐴3)

2
       j = 1, 2.  

 

The spectral decomposition of the matrix 𝐴(𝜔) 
from Sherief (1993) is: 
 
𝐴(𝜔) = 𝜆1𝐸 + 𝜆2𝐹                                                                     (40) 
 

where, E and F are the projectors of 𝐴(𝜔) (see 
Simmons (2003)) 
 
𝐸 + 𝐹 = 1   , 𝐸𝐹 = 𝐹𝐸 = 0  , 𝐸 = 𝐸2 , 𝐹 = 𝐹2                     (41) 
 

Now, √𝐴(𝜔) has the same projectors as of 𝐴(𝜔) 

and if 𝑝1, 𝑝2 are the eigenvalues of √𝐴(𝜔) then, 𝑝1 =

 √𝜆1, 𝑝2 =  √𝜆2. Then, the spectral decomposition of 

the matrix √𝐴(𝜔) are: 
 

√𝐴(𝜔) = 𝑝1𝐸 + 𝑝2𝐹                                                                  (42) 
 

where, 
 

𝐸 =
1

𝜆1−𝜆2
(

𝐴1 − 𝜆2 𝐴2

𝐴3 𝐴4 − 𝜆2
), 𝐹 =

1

𝜆2−𝜆1
(

𝐴1 − 𝜆1 𝐴2

𝐴3 𝐴4 − 𝜆1
).                                                        (43) 

 

Thus,  
 

𝐴∗(𝜔) = √𝐴(𝜔) =
1

𝑝1+𝑝2
(

𝐴1 + 𝑝1𝑝2 𝐴2

𝐴3 𝐴4 + 𝑝1𝑝2
).          (44) 

 

The Taylor series expansion of the matrix 
exponential in Eq. 37 has the form: 
 

exp [−√𝐴(𝜔)𝑥] = exp [− 𝐴∗(𝜔)] =
∑ [− 𝐴∗(𝜔)]𝑛∞

𝑛=0

𝑛!
.           (45) 

 

Using the Cayley-Hamilton theorem, we can 
express 𝐴∗2(𝜔) and higher orders of the matrix 
 𝐴∗(𝜔)in terms of I and 𝐴∗(𝜔)where I is the second 
order unit matrix. Thus, the Taylor series in Eq. 45 
can be reduced to: 
 
exp[− 𝐴∗(𝜔)] = 𝑎𝑜(𝑥)𝐼 + 𝑎1(𝑥)𝐴∗(𝜔).                               (46) 
 

By the Cayley-Hamilton theorem, the 
characteristic roots 𝑝1 𝑎𝑛𝑑 𝑝2 of the matrix 𝐴∗(𝜔) 
must satisfy Eq. 46 and we get: 
 
exp[− 𝑝1𝑥] = 𝑎𝑜(𝑥)𝐼 + 𝑎1(𝑥)𝑝1                                             (47) 
exp[− 𝑝2𝑥] = 𝑎𝑜(𝑥)𝐼 + 𝑎1(𝑥)𝑝2.                                           (48) 
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From Eqs. 47 and 48, we have  
 

𝑎𝑜(𝑥) =
𝑝1 exp[− 𝑝2𝑥]−𝑝2 exp[− 𝑝1𝑥]

𝑝1−𝑝2
,      𝑎1(𝑥) =

exp[− 𝑝1𝑥]−exp[− 𝑝2𝑥]

𝑝1−𝑝2
.                                      (49) 

 

From Eqs. 46 and 49, we have: 
 

exp [√𝐴(𝜔)] = (
𝐵11    𝐵12

𝐵21 𝐵22
)                                                 (50) 

 

where, 
 

𝐵11 =
(𝜆1−𝐴1) exp (−√𝜆2 𝑥)−(𝜆2−𝐴1) exp (−√𝜆1 𝑥)

(𝜆1−𝜆2) 
                        (51) 

𝐵12 =
𝐴2[exp(−√𝜆1 𝑥)−exp(−√𝜆2 𝑥)]

(𝜆1−𝜆2) 
  

𝐵21 =
𝐴3[exp(−√𝜆1 𝑥)−exp(−√𝜆2 𝑥)]

(𝜆1−𝜆2) 
  

𝐵22 =
(𝜆1−𝐴4) exp (−√𝜆2 𝑥)−(𝜆2−𝐴4) exp (−√𝜆1 𝑥)

(𝜆1−𝜆2) 
.                       (52) 

 

Finally, the solution of Eq. 32 is written as 
 
𝑉(𝑥) = 𝐴𝑖𝑘 𝑉(0)   ,    𝑗, 𝑘 = 1 ,2                                               (53) 
 

Hence, using Eqs. 38, 51, and 52 in 53, the field 
variables 𝜑∗(𝑥) and 𝑆∗(𝑥)  are  
 

 𝜑∗(𝑥) = 𝜑1exp (−√𝜆1 𝑥) − 𝜑2 exp (−√𝜆2 𝑥)                  (54) 

𝑆∗(𝑥) =
𝐴3𝜑0

∗

(𝜆1−𝜆2)
 [exp(−√𝜆1 𝑥) − exp(−√𝜆2 𝑥)]               (55) 

 

where, 𝜑1 = 𝜑0
∗(𝐴1 − 𝜆2)/(𝜆1 − 𝜆2), 𝜑2 =

𝜑0
∗(𝐴1 − 𝜆1) /(𝜆1 − 𝜆2).  

 
By using Eq. 35 we have 𝜑0

∗  as 
 

𝜑0
∗ =

𝑟(𝜆1−𝜆2)

𝑣(𝜆1−𝜆2)+√𝜆1(𝐴1−𝜆2)−√𝜆2 (𝐴1−𝜆1)  
.   

 

By using Eqs. 29, 54, and 55 with Eq. 28 we have: 
 

𝑒∗(𝑥) = 𝑒1 exp(−√𝜆1 𝑥) − 𝑒2 exp(−√𝜆2 𝑥)                      (56) 

 

where, 
 

𝑒1 =  
𝜑0

∗ 𝐴3+(𝐴1−𝜆2)(1+𝛾𝑜𝜔)

𝛽(𝜆1−𝜆2)
,  

𝑒2 =  
𝜑0

∗ 𝐴3+(𝐴1−𝜆1)(1+𝛾𝑜𝜔)

𝛽(𝜆1−𝜆2)
. 

 

Form Eq. 16, Eqs. 29, 54, and 56 in the Eq. 16, we 
have the displacement component 𝑢∗(𝑥) as: 
 

(𝐷2 − 𝜆𝑢
2 )𝑢∗(𝑥) = ∑(−1)𝑗−1𝑢𝑗(𝜆𝑗

2 − 𝜆𝑢
2 ) exp (−√𝜆𝑗  𝑥)

2

𝑗=1

 

                                                                                                         (57) 
 

where, 
 

𝜆𝑢
2 = 𝑎2 + 𝑏2 +

𝜔2

𝛼(1+𝜇𝑜𝜔)
, 

𝑢𝑗= 
√𝜆𝑗[𝑒𝑗{(1−𝛼)+𝜔(𝜆𝑜(1−2𝛼)+𝜇𝑜𝛼)}−𝜑𝑗(1+𝛾𝑜𝜔)]

𝛼(1+𝜇𝑜𝜔)(𝜆𝑗
2−𝜆𝑢

2 )
        j=1, 2.  

 

The general solution of the ordinary differential 
Eq. 57 is: 
 

𝑢∗(𝑥) = 𝑢0 exp(−𝜆𝑢𝑥) + ∑ (−1)𝑗−1𝑢𝑗 exp(−√𝜆𝑗 𝑥)2
𝑗=1  (58) 

 

where, 𝜆1
2 ≠ 𝜆2

2 ≠ 𝜆𝑢
2 , 𝑢0 is a constant. 

From the boundary conditions Eq. 36. Using Eqs. 
29, 54, 56, and 58 in the Eq. 20, then the stress 
components 𝜒xx

∗ (𝑥) is: 
 

𝑆xx
∗ (𝑥)  = 𝑆3 exp(−𝜆𝑢𝑥) + ∑(−1)𝑗−1𝜒𝑗 exp (−√𝜆𝑗 𝑥)

2

𝑗=1

 

                                                                                                         (59) 
 

where, 
 
𝑆3 = −2𝛼𝜆𝑢𝑢0(1 + 𝜇0𝜔)  

𝑆𝑗 = −2𝛼√𝜆𝑗 𝑢𝑗 (1 + 𝜇0𝜔) + 𝑒𝑗(1 − 2𝛼)(1 + 𝜆0𝜔) −

𝜑𝑗(1 + 𝛾0𝜔),  j =1, 2. 

 

From Eq. 36 and Eq. 59, we obtain 𝑢0 as: 
 

𝑢0 =
𝜒1−𝜒2

2𝛼𝜆𝑢(1+𝜇0𝜔)
. 

6. Numerical example and discussions 

Since we have 𝜔 = 𝜔𝑜 + 𝑖ψ , where i is the 
imaginary unit, exp(𝜔𝑡) = 𝑒𝑥𝑝(𝜔𝑜)  (𝑐𝑜𝑠 𝜓𝑡 +
 𝑖 𝑠𝑖𝑛𝜓𝑡) and for small values of time, we can take 
𝜔 = 𝜔𝑜 (real). We will compute these physical 
variables numerically for a specific model in order to 
discuss the type of dependence of these physical 
variables on viscosity. The relevant numerical values 
for a material that resembles copper that we selected 
for this purpose are shown in Table 1. 

 
Table 1: Numerical values 

𝜆𝑒 =  7.76 × 1010𝑁/𝑚2 𝜇𝑜 =  0.09 𝑠 𝜔 =  3 
𝜇𝑒 =  3.86 × 1010 𝑁/𝑚2 𝑇𝑜 = 293 𝐾 𝑎 =1.2 
𝜆𝑜 = 0.06 𝑠 𝜀 =  0.0168 𝑏 =1.3 
𝛽𝑇 =  1.78 × 10−5𝐾−1 𝛼 =  0.25 𝑣 =50 
𝐶𝐸  =  383.1 𝑚2/𝐾   𝑟∗ =100 𝐶𝑇 =2 
𝜌 =  8954 𝑘𝑔/𝑚3     

 

From Table 1, the variations of the temperature 
distribution 𝜑, the mean stress 𝑆, the displacement 
component u, and the stress component 𝑆𝑥𝑥  along x 
axis at two different plane 𝑦 =  𝑧 =  0. and 𝑦 =
 𝑧 =  0.4 for a particular time instant 𝑡 =  0.25 have 
been shown for: 
 
(iii) at 𝑦 =  𝑧 =  0., 𝑡 =  0.25, ( solid by solid line) 
(iv) at 𝑦 =  𝑧 =  0.4, 𝑡 =  0.25 ,(solid by solid-dot 

line) 
(v) at 𝑦 =  𝑧 =  0., 𝑡 =  0.25, (solid by solid-dot 

(bold) line)  
(vi) at 𝑦 =  𝑧 =  0.4, 𝑡 =  0.25, (solid by dashed 

line) 
 

These variations are shown in Figs. 1-7 
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Fig. 1: Mean stress distribution S. vs. x at t=0.25 

 

 
Fig. 2: The variation of temperature vs. distance x at t = 0.25 

 

 
Fig. 3: Stress distribution vs. distance x at t  =0.25 
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Fig. 4: Displacement distribution u and x at t =0.25 

 

From Figs. 1-4 show that 𝑦 𝑎𝑛𝑑 𝑧 decreasing 
effect on 𝜑, 𝑆 , 𝑢  and 𝑆𝑥𝑥  for both GTVE and GTE 
model for fixed t. Also, it is depicted that the 
numerical values of 𝑆 , 𝑢 and 𝑆𝑥𝑥  are greater in GTVE 

model than GTE model for fixed,  𝑦, 𝑧 𝑎𝑛𝑑 𝑡, but in 
Fig. 2 the viscosity has no significant effect on 𝜑. The 
maximum value of all the physical quantities attain 
in the case of GTVE at the plane 𝑦 =  𝑧 =  0. 

 

 

Fig. 5: Stress distribution Sxx vs. x for two time instants 
 
 

 
 

Fig. 6: Temperature distribution 𝜑 vs. x for two time instants 
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Fig. 7: Displacement distribution 𝑢 vs. x for two time instants 
 

Figs. 5-7 show the distributions of  𝑢, 𝜑 𝑎𝑛𝑑 𝑆𝑥𝑥  
for the GTVE model at y=z=0 and y=z=0.4 for two 
different time instants t=0.2 and t=0.3. Figs. 5-7 
show that 𝑡 has increasing influence on all the 
physical quantities. 

Figs. 1-7 show that the wave propagation speeds 
of all physical quantities are finite and conform to 
the physical behavior of elastic materials. All of the 
additions to the illustration indicate that the 
boundary conditions Eqs. 35 and 36 are satisfied. 

7. Conclusion 

In this research, we apply the state space 
approach to solve a generalized thermo-elastic issue 
of an isotropic half-space with changing thermal 
conductivity. 
 
 The numerical results presented here may be 

considered more general in the sense that they 
include the exact analysis of the Laplace transform 
domain of different field quantities. It is concluded 
from the graphical results presented in most cases 
that the Biot theory gives a set of results that 
intermediate those given by the GN theories. 

 All of the distributions analyzed have a non-zero 
value only in a confined region of space; all values 
vanish in the same way, suggesting that the region 
has not yet experienced thermal disturbance. All 
physical variables' behavior at y=z=zero and 
y=z=0.4 are likely to be comparable, with minor 
magnitude variations. 

 The behavior of physical processes is of interest, 
and the importance of state space analysis has 
been acknowledged (Bahar and Hetnarski, 1978).  

 The state space method is more general than the 
traditional Laplace and Fourier transform 
methods. As a result, state space is applicable to all 
systems that can examined by integral transforms 
in time, as well as many systems where transform 
fails (Ogata, 1967). 

 We attempted to implement a very useful 
technique in order to solve a three-dimensional 
generalized thermo-viscoelastic issue. 
Comparisons were made within the theory in the 
presence and absence of viscosity effects. 

List of symbols  

ρ Density 
t Time 
CE Specific heat at constant strain 
𝐵𝑖  Components of magnetic field strength 
𝑞𝑛 Components of heat flux vector 
μo Magnetic permeability 
𝜎𝑥𝑦 Kronecker delta 
𝑆𝑖𝑗 Components of stress tensor 
𝜁𝑖𝑗 Components of strain tensor 
ui Components of displacement vector 
λ, μ Lame's constants 
𝜃 𝑇 − 𝑇0 
To

  
Reference temperature is chosen so that 
|𝑇 − 𝑇0| 𝑇0 ≪ 1⁄  

β𝑇 Coefficient of linear thermal expansion 

𝜀      
𝛾𝑒

2𝑇𝑜/[𝜌𝐶𝐸( 𝛾𝑒 + 2𝜇𝑒)]; Thermoelastic coupling 
parameter 

𝛾 (3𝜆 + 2𝜇)β𝑇 
𝛼 𝜇𝑒( 𝛾𝑒 + 2𝜇𝑒) 
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