
 International Journal of Advanced and Applied Sciences, 11(1) 2024, Pages: 207-216  
 

 
 

 
 

Contents lists available at Science-Gate  

International Journal of Advanced and Applied Sciences 
Journal homepage: http://www.science-gate.com/IJAAS.html 

 

 

207 

 

Detection and risk assessment of COVID-19 through machine learning 
  

B. Luna-Benoso, J. C. Martínez-Perales *, J. Cortés-Galicia, U. S. Morales-Rodríguez 
 
Escuela Superior de Cómputo, Instituto Politécnico Nacional, Mexico City, Mexico 
 

A R T I C L E  I N F O   A B S T R A C T  

Article history: 
Received 28 July 2023 
Received in revised form 
5 January 2024 
Accepted 15 January 2024 

COVID-19, also known as coronavirus disease, is caused by the SARS-CoV-2 
virus. People infected with COVID-19 may show a range of symptoms from 
mild to severe, including fever, cough, difficulty breathing, tiredness, and 
nasal congestion, among others. The goal of this study is to use machine 
learning to identify if a person has COVID-19 based on their symptoms and to 
predict how severe their illness might become. This could lead to outcomes 
like needing a ventilator or being admitted to an Intensive Care Unit. The 
methods used in this research include Artificial Neural Networks 
(specifically, Multi-Layer Perceptrons), Classification and Regression Trees, 
and Random Forests. Data from the National Epidemiological Surveillance 
System of Mexico City was analyzed. The findings indicate that the Multi-
Layer Perceptron model was the most accurate, with an 87.68% success rate. 
It was best at correctly identifying COVID-19 cases. Random Forests were 
more effective at predicting severe cases and those requiring Intensive Care 
Unit admission, while Classification and Regression Trees were more 
accurate in identifying patients who needed to be put on a ventilator. 
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1. Introduction 

* In late 2019, in Hubei province, China, there 
were reports of many patients in hospitals suffering 
from pneumonia and respiratory failure due to a 
newly identified coronavirus named SARS-CoV-2. 
The World Health Organization later called this 
disease COVID-19 and declared it a pandemic in 
March 2020 (Alhadi et al., 2023). Although there 
have been different variants of COVID-19, such as 
Alpha, Beta, Delta, Gamma, Epsilon, Zeta, Eta, and 
omicron, some common symptoms presented by 
patients include headache, nasal congestion, fever, 
and fatigue, among others. However, they can also 
present numerous complications, including 
respiratory and pulmonary symptoms, acute 
respiratory distress syndrome (ARDS), and low 
oxygen saturation (Firouzabadi et al., 2023; Van 
Kessel et al., 2022; Ballering et al., 2022), which can 
lead to the patient's death. Just in December 2020, 
79.2 million confirmed cases and more than 1.7 
million deaths had been reported worldwide (WHO, 
2020). By December 2021, the statistics show a total 
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of 273 million reported cases and 5.3 million deaths 
(WHO, 2021), while by December 2022, there were 
649 million confirmed cases and more than 6.6 
million deaths worldwide (WHO, 2022). On the other 
hand, by February 2023, 762 million confirmed cases 
and 6.8 million deaths had been reported worldwide 
(WHO, 2023). The statistics show a greater growth of 
reported cases and deaths during the first years 
compared to more recent years; however, the 
number of registered cases continues to increase. 
Although the rapid antigen test and RT-PCR test are 
fast ways to diagnose COVID-19 (Ferté et al., 2021), 
methodologies have been developed in the field of 
computer science for the timely detection of COVID-
19 and its severity.  

There are works that analyze the severity of new 
COVID-19 variants compared to others (Nyber et al., 
2023) but do not carry out a prediction of severity. 
They only carry out a study of reported cases in their 
databases; other works compare different methods 
but only for the detection of COVID-19 through 
symptoms (Rufino et al., 2023). On the other hand, 
there are works that evaluate the severity of patients 
with COVID-19 and their possibilities of entering the 
Intensive Care Unit (ICU) (Boussen et al., 2022), but 
they do so using respiratory rate and oxygen 
saturation signals, whereas other works use clinical 
data but only limit themselves to the prediction of 
intubated cases (Arvind et al., 2021). Developing a 
model that can identify COVID-19 infections and 
predict the severity of the cases, including whether a 
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patient may require admission to an Intensive Care 
Unit or mechanical ventilation, based solely on the 
symptoms reported by the patient, would be highly 
beneficial. This research aims to apply machine 
learning techniques to detect COVID-19 and 
categorize positive cases as either severe or non-
severe. We utilize the database from the National 
Epidemiological Surveillance System (SINAVE) in 
Mexico City, which tracks potential COVID-19 cases. 
This database includes demographic details and 
symptoms of individuals tested for COVID-19, 
distinguishing between positive and negative results, 
as well as information on the severity of the cases. 
The machine learning component involves the use of 
Artificial Neural Networks, specifically Multi-Layer 
Perceptrons, as well as Classification and Regression 
Trees and Random Forests as classification methods. 
The effectiveness of these methods is evaluated 
based on accuracy and the performance metrics 
derived from their confusion matrices. This study 
offers valuable insights and could significantly 
contribute to the efforts of researchers working on 
technological solutions to combat COVID-19. 

2. Literature review 

Machine learning is a subfield of artificial 
intelligence that is concerned with developing 
techniques that allow computers to learn from a set 
of data. Several works have been developed using 
machine learning techniques that allow the detection 
of COVID-19. Some works include the detection of 
COVID-19 through the analysis of chest X-ray images 
(Hu et al., 2022; Bakheet and Al-Hamadi, 2021) or 
lung radiographs (Panthakkan et al., 2021), while 
other works include images of both chest and lung 
radiographs (Duong et al., 2023). There are works 
that carry out COVID-19 detection using genomic 
data (Thousif et al., 2022), other works use voice 
signals (Kanti et al., 2021), and others, in addition to 
voice signals, do so through coughing and breathing 
(Pahar et al., 2022; Despotovic et al., 2021). For their 
part, López-Úbeda et al. (2020) highlighted the 
importance of textual information processing for 
classification. In this work, in addition to considering 
chest radiograph image analysis for COVID-19 
detection, they also consider textual reports and 
conclude that these textual reports contain relevant 
information to determine the probability that a 
person presents signs of COVID-19, so they propose 
a text classification system based on the integration 
of different information sources applied to the 
detection of COVID-19 based on chest radiograph 
reports, for which they used SVM as a classifier. 
Cisterna-García et al. (2022) also highlighted the 
importance of diagnostic tests based on data to 
reduce the mortality rate of COVID-19, and although 
this work uses data records, it only limits itself to 
predicting the mortality index and risk of 
hospitalization from demographic data and 
comorbidities obtained from clinical histories of 
patients with COVID-19, in this work they used 
Random Forest and Logistic Regression for machine 

learning, obtaining an average accuracy of 71-73% 
for risk of hospitalization. Works such as the one 
proposed by Feteira-Santos et al. (2022) use sets of 
records from the SINAVE for monitoring COVID-19 
cases and the National e-Death Certificates 
Information System (SICO) provided by health 
information systems. However, they only limit 
themselves to comparing textual information. 
Abolfotouh et al. (2022) used records of patient 
characteristics such as comorbidities, laboratory 
findings, hospitalization, admission to Intensive Care 
Units (ICU), and in-hospital and overall mortality, 
with the aim of describing hospitalization rates, ICU 
admission, and identifying predictors of in-hospital 
mortality for COVID-19, that is, they identify causes 
of in-hospital mortality but do not make predictions 
of either COVID-19 detection or severe cases. For 
their part, the work proposed by Perez et al. (2021) 
performed a multivariate logistic regression analysis 
to determine the effects of age, sex, previous medical 
condition, and COVID-19 symptoms to determine the 
probability of positive cases and hospitalizations 
during the first wave of the pandemic, March-April 
2020, but do not make predictions of severe cases, 
intubated cases, and cases requiring ICU admission. 
On the other hand, the work proposed by Huyut 
(2023) is limited to identifying cases of severe and 
non-severe COVID-19 patients at the time of 
admission using routine blood values (RBV) and 
demographic data. Arvind et al. (2021), for their 
part, used clinical data but only made predictions of 
intubated cases. At the same time, Rufino et al. 
(2023) addressed patient symptoms but only for 
COVID-19 detection. It is observed that machine 
learning applied to data records plays an important 
role in the timely detection of COVID-19 as well as in 
determining cases of severe and non-severe patients. 

3. Methodology 

3.1. Artificial neural networks 

Artificial Neural Networks (ANNs) are 
computational models inspired by how biological 
neural networks function. They are widely used in 
the field of machine learning for classification tasks. 
ANNs learn from a training set, adjusting their 
output data until they produce the desired results. 
An ANN consists of interconnected nodes organized 
in layers. The nodes, also known as neurons, are 
grouped into different layers. Various types of ANNs 
exist based on their topology, including the Single 
Perceptron and the Multilayer Perceptron (Liu et al., 
2023). The Single Perceptron represents a simple 
artificial neuron, composed of an input layer �⃗� =
(𝑥1, 𝑥2, … , 𝑥𝑛), a weight vector �⃗⃗⃗� = (𝑤1 , 𝑤2, … , 𝑤𝑛), 
an activation function 𝜑, and an output layer �⃗�, as 
shown in Fig. 1. 

The activation function 𝜑 transmits information 
to the next layer of interconnected neurons until 
reaching the output layer. Table 1 presents various 
activation functions and their corresponding 
formulas. 
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Fig. 1: Simple perceptron with n input neurons and one output neuron 

 
Table 1: Activation functions and formulas 

Activation Function Formula (Equation) 
Relu max(0, 𝑥) 

Sigmoid 
1

1 + 𝑒−𝑥
 

Softmax 
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝐾

𝑗=1

, 𝐾 is the number of classes 

Softplus ln(1 + 𝑒𝑥) 

Softsign 
𝑥

1 + |𝑥|
 

Tanh tanh(𝑥) 

Selu 

𝜆𝑥𝑖𝑓𝑥 ≥ 0

𝛾𝛼(𝑒𝑥 − 1)𝑖𝑓𝑥 < 0
 

with 𝛼 = 1.67𝑎𝑛𝑑𝜆 = 1.05 

Elu 
𝑥𝑖𝑓𝑥 > 0

𝛼(𝑒𝑥 − 1)𝑖𝑓 ≤ 0
 with 𝛼 = 0.3 

 
Conversely, a Multilayer Perceptron (MLP) is 

composed of an input layer, an output layer, and a 
set of intermediate layers known as hidden layers. 
Training is carried out using backpropagation. 

3.2. Decision trees 

A decision tree is a supervised learning model 
that uses the hierarchical structure of a tree. Each 

internal node represents a feature or attribute 
chosen using the maximum gain value, the branches 
represent decision rules, and the leaf nodes 
represent the decision outcome (Charbuty and 
Abdulazeez, 2021). Decisions are made based on a 
series of questions known as tests, whose sequences 
of answers transfer the information from the root 
node to some leaf node. This leaf node contains the 
information that allows the decision to be made. 

3.3. Random forest 

It is a supervised learning model in which the 
dataset is divided into several subsets composed of 
random samples. Subsequently, an independent 
decision tree model is used on each subset. Finally, 
the results of each decision tree are combined using 
a voting system called majority voting, which 
consists of giving more weight to those trees with 
the highest confidence in their result. The result 
obtained by the random forest model is chosen 
(Zhang et al., 2023). Fig. 2 shows a typical structure 
of random forests. 

 

training set

aleatory 
sample

aleatory 
sample

aleatory 
sample

majority-voting

final result  
Fig. 2: Random forest model 
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3.4. Confusion matrix 

The purpose of a confusion matrix is to evaluate 
the performance of a classifier model by describing 
how real values are distributed with respect to the 
values produced by the classifier model. The 
confusion matrix groups in a table the true positive 
(TP), true negative (TN), false positive (FP), and false 
negative (FN) values that the model produces as 
results (Fig. 3). 

 

Actual values

Positive Negative

Positive

Negative

TP FP

FN TN

 
Fig. 3: Confusion matrix 

 
Based on the confusion matrix, metrics such as 

Sensitivity (SE) and Specificity (SP) can be obtained, 
which indicate the ability of the classifier model to 
discriminate between positive and negative cases. 
The Accuracy (ACC) metric can also be obtained, 
which indicates the percentage of correct predictions 
out of the total (Valero-Carreras et al., 2023). The 
equations that allow to obtain the values of SE, SP, 
and ACC are given by: 
 

𝑆𝐸 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

𝑆𝐸 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

𝐴𝐶𝐶 =
𝑇𝑁+𝑇𝑃

𝐹𝑁+𝐹𝑃+𝑇𝑁+𝑇𝑃
  

3.5. COVID-19 data set 

The SINAVE of Mexico encompasses a range of 
epidemiological strategies and activities designed to 
generate epidemiological information beneficial for 
public health. This system consolidates information 
from across the nation and all health system 
institutions. Specifically, SINAVE maintains a 
database for tracking potential COVID-19 cases in 
Mexico City known as SINAVE COVID-19. This 
database comprises approximately 1 million records 
with 89 different attributes related to individuals 
suspected of having COVID-19. It includes 
demographic details and comorbidities. Attributes 
cover specific patient information such as gender, 
age, nationality, occupation, pregnancy status for 
women and the duration of pregnancy. Additional 
data include the patient's residential area, symptoms 
experienced leading to a COVID-19 diagnosis (e.g., 
diarrhea, headache, muscle pain, vomiting, and 
difficulty breathing), and conditions like obesity, 
smoking, and heart disease.  

The database also categorizes COVID-19 cases as 
severe or non-severe based on the patient's 

condition, including fields like "evolution," 
"intubated," or "in ICU" for severe cases. 

The Multi-Layer Perceptron (MLP) model is noted 
for its strong learning and classification capabilities, 
especially with non-linear data sets. However, MLP 
models can be complex to interpret and require 
tuning of many hyperparameters to achieve desired 
results. A significant challenge with MLP is its 
lengthy training time, exacerbated by the continuous 
updates and growth of the SINAVE dataset. Decision 
Trees classify data by recursively dividing the 
training set into as many homogenous groups as 
possible, using criteria like the Gini index, Entropy, 
and Log loss for measuring homogeneity. Despite 
their simplicity, Decision Trees risk overfitting, 
which can be mitigated by limiting tree growth 
during training, such as by restricting the maximum 
depth. Lastly, Random Forests, which utilize multiple 
Decision Trees, are less prone to overfitting and can 
handle incomplete data, making them well-suited to 
the SINAVE dataset. However, their complexity leads 
to slower training times. 

4. Results 

In this section, the experiments and results 
obtained to identify positive COVID-19 cases and 
determine whether a severe case is expected are 
presented using ANNs of the MLP type, Decision 
Trees, and Random Forests. 

The SINAVE dataset consists of around 1 million 
records with 89 variables, encompassing a wide 
range of information. These variables include data 
on patients' residences, personal details like gender, 
age, and nationality, symptoms of COVID-19 such as 
fever, cough, difficulty breathing, and chest pain, as 
well as any chronic diseases patients might have 
alongside COVID-19 symptoms. Additional details 
recorded are whether patients received antiviral 
treatment before being admitted to healthcare 
facilities and if they were admitted to the ICU or 
required intubation, which are indicators of the 
severity of their condition. Another key variable is 
the result of the COVID-19 antigen test for each 
patient, although some records lack this test result. 

To utilize this dataset effectively, an initial step of 
data preprocessing is necessary to exclude records 
missing the antigen test result or other critical 
information needed for the classification models. 
Consequently, variables not essential to the 
objectives of this study, such as patients' residency, 
nationality, migration status, entry date into the 
country, or whether the patient speaks an 
indigenous language, were omitted. After refining 
the dataset, 50 variables were selected that focus on 
COVID-19 symptoms, chronic health conditions, and 
factors indicating the necessity for ICU admission or 
intubation. Out of these, 46 variables are used as 
inputs for the classifiers, and four binary variables 
are used to indicate the outcomes, differentiating 
between positive and negative COVID-19 cases, 
predicting severe cases, the need for intubation, and 
ICU admissions. 
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During the classification phase, the study first 
focused on the MLP model. A key initial step was to 
set specific model parameters, known as 
hyperparameters, including the number of hidden 
layers, the number of neurons in each layer, the 
activation function for each layer, the loss function, 
the optimization function, and the metrics for 
evaluating the model's performance. All experiments 
were conducted with 30 training cycles or epochs. 
The probabilistic binary cross entropy loss function 
was selected because the MLP model's outputs are 
binary (yes/no answers), and accordingly, binary 
accuracy was used as the evaluation metric. An 
initial set of hyperparameters was proposed and 
later adjusted based on the results to fine-tune the 
MLP model. The initial experiments used a sigmoid 
activation function, the Adam optimization function, 
and included 30 epochs of training. Validation was 
performed using cross-validation with five random 
splits to assess the model's accuracy. 

A specific figure, referred to as Fig. 4, illustrates 
the process of determining the optimal division of 
the dataset into training and testing portions. The 
graph plotted the training set size on the horizontal 
axis against the accuracy percentage on the vertical 
axis. Based on this analysis, it was decided to allocate 
80% of the dataset for training the model and the 
remaining 20% for testing its performance. This 
decision was aimed at achieving a balanced 
approach to model training and validation, ensuring 
the model is both well-trained and accurately 
evaluated on unseen data. 

 

 
Fig. 4: Percentage of the training set and accuracy of the 

MLP model 

 
The second stage of the experiments consisted of 

determining the number of hidden layers that the 
MLP model must have, as well as the number of 
neurons per layer. Fig. 5 shows the results of the 
experiments carried out using one, two, and three 
hidden layers. The x-axis corresponds to the number 
of neurons per layer, and the y-axis to the accuracy 
obtained. In Fig. 5a, the results are shown using one 
hidden layer, where the best results were obtained, 
with 79 neurons reaching an accuracy of 87.51%. 
Using a first hidden layer with 79 neurons, in Fig. 5b, 
the results are shown to determine with how many 
neurons the best results are obtained in a second 
hidden layer. The best results were obtained with 27 
neurons, which obtained an accuracy of 87.64%. 

Using a first hidden layer with 79 neurons and a 
second hidden layer with 27 neurons, Fig. 5c shows 
the results obtained when using a third hidden layer. 
It is observed that the best results were obtained 
with 30 neurons, with an accuracy of 87.67%. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 5: Results obtained by using a hidden layer in a, a 
second hidden layer in b, and a third hidden layer in c 

 

The activation function was determined for each 
hidden layer. Fig. 6 shows the results obtained when 
applying different activation functions in Fig. 6a to 
the first hidden layer, in Fig. 6b to the second hidden 
layer, in Fig. 6c to the third hidden layer, and in Fig. 
6d to the output layer. The best results were 
obtained when applying Softsign, Sigmoid, Softsign, 
and Sigmoid activation functions to the first, second, 
and third hidden layer and output layer, respectively. 

Fig. 7 shows the result of applying different 
activation functions to the MLP model, where it was 
determined to use an Adam activation function. 

As a result of the experiments obtained from the 
different hyperparameters applied to MLP, the best 
results were obtained by using 80% as the training 
set and 20% as the test set; configuring the ANN with 
three hidden layers, the first with 79 neurons, the 
second with 27 neurons and the third with 30 
neurons; the hidden layers use Softsign, Sigmoid and 
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Softsign activation functions respectively and the 
output layer uses a Sigmoid activation function; 
finally, the chosen optimization function was Adam. 
The accuracy value obtained with these 
hyperparameters was 87.68%. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6: Different activation functions applied to the first 
hidden layer in a, the second hidden layer in b, the third 

hidden layer in c, and the output layer in d 
 

MLP consists of 4 binary outputs. Fig. 8 shows the 
confusion matrix of each of the output variables and 
their respective Sensitivity, Specificity, and Accuracy 
values. Fig. 8a corresponds to positive or negative 
COVID-19 cases, Fig. 8b corresponds to the 
prediction of severe cases, Fig. 8c corresponds to 
those cases that, due to their severity, required 
intubation, and Fig. 8d to those cases that required 
admission to the Intensive Care Unit. Nonetheless, a 
Classification and Regression Tree (CART) was used 

for the decision tree model. Fig. 9 allows us to 
determine the percentage of the training set that 
should obtain the best results with the CART model. 
The best results are obtained using 85% of the 
dataset for the training set and 15% for the test set. 
The splitting criterion is a technique that allows one 
to decide how a tree should branch. Fig. 10 shows 
the result of applying the Gini, Entropy, and Log_loss 
splitting criteria, from which the Entropy criterion 
shows the best results. 

 
 

 
Fig. 7: Different optimization functions applied to MLP 

 
Here are all the hyperparameters that make up 

the proposed CART model for this work: 
 

 85% of the dataset corresponds to the training set 
and 15% to the test set. 

 Entropy was used as the division criterion. 
 A "Best" division strategy was used. 
 The tree has a maximum depth of 6 levels. 
 A minimum of 2 examples was considered for 

separating an internal node. 
 A minimum of 5 examples was considered for 

creating a leaf node. 
 42 characteristics were considered to find the best 

division in a node. 
 The tree comprised a maximum of 180 leaves. 
 It does not have a leaf weight fraction, minimum 

decreasing impurity, class weights, or alpha 
complexity hyperparameter. 

 
The CART model with the considered 

hyperparameters showed an accuracy of 86.90% 
using 5-fold cross-validation. 

Fig. 11 shows the confusion matrix of each of the 
output variables and their respective Sensitivity, 
Specificity, and Accuracy values using the CART 
model. 

Random forest is a model used in the field of 
machine learning. The model combines the output of 
multiple decision trees to obtain a more robust 
model than the result obtained by a single decision 
tree. For this work, the tree forests created contain 
CART trees with the same hyperparameters already 
presented. Fig. 12 shows tests performed with 
different numbers of trees and their respective 
accuracy value. It is observed that the best result was 
obtained with a forest composed of 80 trees, 
obtaining an accuracy of 87.40%. 
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Fig. 8: Confusion matrix of each output variable in the MLP model 

 

 
Fig. 9: The percentage of the training set and the accuracy 

of the CART model 

 

 
Fig. 10: Division criteria applied to the CART model 
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Fig. 11: Confusion matrix of each of the output variables of the CART model 

 

 
Fig. 12: Random forest with different numbers of trees 

and their respective accuracy obtained 
 

The Random Forest model used for this work is 
composed of the following features: 

 
 Each tree in the forest is composed of CART trees 

with the features exposed in the CART model for 
solving this problem. 
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Fig. 13: Confusion matrix of each of the output variables of the Random Forest model 
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The MLP model demonstrated the highest 
accuracy at 87.68%, followed closely by Random 
Forest at 87.45% and CART at 86.90%. The 
evaluation also considered Sensitivity (the ability to 
identify positive cases), Specificity (the ability to 
identify negative cases), and overall Accuracy (the 
proportion of all correct predictions) from each 
model's confusion matrix across four scenarios: 
detecting positive COVID-19 cases, predicting 
severity, identifying cases requiring intubation, and 
those necessitating ICU admission. 

For identifying positive COVID-19 cases, MLP 
showed superior accuracy and sensitivity, meaning it 
was more effective in correctly identifying both 
positive cases and those actually sick compared to 
CART and Random Forest. However, CART excelled 
in specificity, indicating a higher accuracy in 
identifying patients without COVID-19. 

When predicting severe cases, Random Forest led 
in accuracy and specificity, suggesting it was better 
at correctly identifying severe cases and more 
accurately classifying non-severe cases as such. 
Meanwhile, CART showed the highest sensitivity, 
indicating a stronger ability to detect severe cases. 

In predicting cases requiring intubation, CART 
had the highest accuracy, MLP showed the greatest 
sensitivity, and Random Forest achieved perfect 
specificity. This implies that CART was most accurate 
in predicting intubated patients, MLP was better at 
identifying patients who would be intubated, and 
Random Forest excelled in correctly identifying 
patients who would not need intubation. 

Finally, for predictions concerning ICU admission, 
Random Forest had the highest accuracy and 
specificity, whereas CART had the highest sensitivity. 
This suggests that Random Forest was most accurate 
in predicting ICU admissions and distinguishing 
patients who did not require ICU care, while CART 
was better at identifying patients who were admitted 
to the ICU. In comparison with other works that do 
something similar to the work exposed, Cisterna-
García et al. (2022) showed a hospitalization risk 
accuracy result of 0.75, while in this proposed work 
an accuracy of 0.8155 (Random Forest) was 
obtained regarding the prediction of patient severity, 
which is an indicator of a patient requiring 
hospitalization, in addition to the best accuracy 
values for intubated cases and ICU admission cases 
being 0.9449 (CART) and 0.9532 (Random Forest), 
data that directly correspond to patients requiring 
hospitalization. On the other hand, Arvind et al. 
(2021) carried out the prediction of intubated 
COVID-19 cases and report an accuracy of 0.84 with 
the model proposed by the authors, however, in this 
work an accuracy of 0.9449 was obtained with the 
CART model.  

On the other hand, when using KNN for detecting 
severe cases, Huyut (2023) reported an accuracy of 
0.8, like the value obtained in this work of 0.8155 
(Random Forest). Although better results are 
achieved with the work exposed than with other 
works, however, one of the limitations is that 3 
different models are being used separately to 

achieve it, it would be interesting to generate a 
model that could obtain the best results that these 
three models give separately. 

6. Conclusion and future work 

This work proposed to carry out the detection of 
COVID-19, as well as the prediction of severity, 
prediction of being intubated, and prediction of 
being admitted to the Intensive Care Unit of a COVID-
19 patient through symptoms presented, for this 
Artificial Neural Networks of Multilayer Perceptron, 
Decision Trees and Random Forests were used. The 
data used were provided by the National System of 
Epidemiological Surveillance (SINAVE) of Mexico 
City. The results were compared via the accuracy 
that the models yielded using 5-fold cross-validation 
and the sensitivity, specificity, and accuracy metrics 
obtained through the confusion matrix. Some works 
shown in state-of-the-art detect COVID-19 in 
patients. However, they do so through analysis of 
chest X-ray images (Bakheet and Al-Hamadi, 2021; 
Duong et al., 2023; Hu et al., 2022; Panthakkan et al., 
2021), on the other hand, other works, like the one 
proposed, use data records, however, they only limit 
themselves to one of the proposed problems such as 
prediction of intubated cases (Arvind et al., 2021), 
identification of severe cases (Huyut, 2023), or show 
the risk of hospitalization of a COVID-19 patient 
(Cisterna-García et al., 2022), which is associated 
with the severity of the patient. The proposed work, 
for its part, contemplates the four mentioned 
problems using records of symptoms presented by 
patients, and three different classifiers were used 
that together show better accuracy results compared 
to the works with which it was compared (Cisterna-
García et al., 2022; Arvind et al., 2021; Huyut, 2023). 
With MLP, the best accuracy of 87.68% was 
obtained. However, in terms of the accuracy yielded 
by the confusion matrix regarding the prediction of 
severe cases, Random Forest obtained the best result 
with 0.8155. For the prediction of intubated cases, 
CART obtained the best result with 0.9449. Finally, 
for those cases requiring admission to the Intensive 
Care Unit, Random Forest obtained the best result 
with 0.9532. It is observed that to have a work that 
considers detecting positive COVID-19 cases and 
their severity requires more than one classifier to 
obtain favorable results. Consequently, researchers 
could perform experiments with different databases 
of symptom-related COVID-19 records that allow 
detection and consider a greater number of models 
to determine which ones yield the best results in 
each of the predictions made. 
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