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In this paper, we used the Legendre operational differential matrix method 
based on the Tau method to find the approximate analytical solutions to the 
initial value problems and boundary value problems of ordinary differential 
equations. This method allows the solution of the ordinary differential 
equation to be computed in the form of an infinite series in which the 
components can be easily calculated. We introduced a comparison between 
the approximate solution that we computed and the exact solution of the 
selected problem, as we found the absolute error. According to the numerical 
results, the series of solutions we found are accurate and very close to the 
exact analytical solutions. 
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1. Introduction 

*Many methods have been developed so far for 
solving ordinary differential equations (ODEs). 
These methods can provide exact-analytical 
solutions, approximate-analytical (series) solutions, 
or numerical solutions for the ODE (Islam, 2015; 
Hossain et al., 2017; Masenge and Malaki, 2020). The 
topic of the approximate analytical methods for 
solving ODE has been rapidly growing in recent 
years, whereas the series of solutions have been 
studied by several authors during the past few years 
(Geng et al., 2009; Sakka and Sulayh, 2019; Moore 
and Ertürk, 2020). In this work, we have used the 
Legendre operational differential matrix method 
based on the Tau method to find the series of 
solutions for the ODE. This method is a general semi-
analytic approach used to obtain a series of solutions 
for the ODE with initial (or boundary) conditions. 
The beginning of using this method dates back to 
2014, and below, we will introduce a summary of 
what the researchers who preceded us presented 
regarding the use of this method. 

Jung et al. (2014) used the Legendre operational 
differential matrix method based on the Tau method 
to find the approximate analytical solutions of the 
ODE with initial conditions. Edeo (2019) used the 
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same method to find the approximate analytical 
solutions of the ODE with boundary conditions. 
These researchers have solved the following form of 
the second order ODE: 
 
𝑥′′(𝑡) + 𝑝(𝑡)𝑥′(𝑡) + 𝑓(𝑡 , 𝑥) = 𝑔(𝑡)   , 𝑡 ≥ 0                         (1) 

 
Of course, Eq. 1 does not include all types of the 

second-order ODE. Therefore, during this work, we 
will expand Eq. 1 into the following form, which is a 
general form that includes all types of the second 
order ODE: 
 
 𝑥′′(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑥′(𝑡))   , 𝑡 ≥ 0                                              (2) 

2. Shifted Legendre polynomials 

The Legendre polynomials of order r are defined 
on the interval [−1, 1] and are denoted by 𝐿𝑟(𝑧). 
These polynomials can be determined with the help 
of the following recurrence relations (Jung et al., 
2014): 
 
𝐿0(𝑧) = 1                                                                                         (3) 
𝐿1(𝑧) = 𝑧                                                                                         (4) 

𝐿2(𝑧) =
3 

2
𝑧2 −

1 

2
                                                                            (5) 

𝐿3(𝑧) =
5 

2
𝑧3 −

3 

2
𝑧                                                                         (6) 

𝐿4(𝑧) =
35 

8
𝑧4 −

15 

4
𝑧2 +

3 

8
                                                          (7) 

𝐿𝑟+1(𝑧) =
2𝑟+1 

𝑟+1
𝑧𝐿𝑟(𝑧) −

𝑟 

𝑟+1
𝐿𝑟−1(𝑧)    ;   𝑟 = 1, 2, 3, ….   

                                    (8) 
 

In order to use the Legendre polynomials on the 
interval [0, 1], the so-called shifted Legendre 
polynomials are defined by introducing  𝑧 = 2𝑡 − 1. 
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Let the shifted Legendre polynomials  𝐿𝑟(2𝑡 − 1 ) 
be denoted by 𝑝𝑟(𝑡), then 𝑝𝑟(𝑡) can be obtained as 
follows: 
 
𝑝0(𝑡) = 1                                                                                         (9) 
𝑝1(𝑡) = 2𝑡 − 1                                                                             (10) 
𝑝2(𝑡) = 6𝑡2 − 6𝑡 + 1                                                                 (11) 
𝑝3(𝑡) = 20𝑡3 − 30𝑡2 + 12𝑡 − 1                                             (12) 
𝑝4(𝑡) = 70𝑡4 − 140𝑡3 + 90𝑡2 − 20𝑡 + 1                            (13) 

𝑝𝑟+1(𝑡) =
2𝑟+1 

𝑟+1
(2𝑡 − 1)𝑝𝑟(𝑡) −

𝑟 

𝑟+1
𝑝𝑟−1(𝑡)  ;  𝑟 = 1, 2, 3,  

                                                                                                         (14) 

3. Description of Legendre operational 
differential matrix method 

In order to describe Legendre operational 
differential matrix method in a simple way, we will 
consider the following second order initial value 
problem, 
 

 𝑥′′(𝑡) = 𝑓( 𝑡, 𝑥(𝑡),  𝑥′(𝑡))   , 𝑡 ≥ 0                                       (15) 

 

with initial conditions: 
 
𝑥(0) = 𝑎   ,   𝑥′(0) = 𝑏.                                                             (16) 
 

Note that we can deal with the higher-order 
initial value problem or boundary value problem. 

The solution 𝑥(𝑡) of problem 15 can be 
approximated as (Edeo, 2019; Jung et al., 2014): 
 
𝑥(𝑡) = ∑ 𝑐𝑟  𝑝𝑟(𝑡)

∞
𝑟=0                                                                   (17) 

 

where,  𝑝𝑟(𝑡) are the shifted Legendre polynomials, 
𝑐𝑟 are the shifted Legendre coefficients. 
 

Also, the coefficients 𝑐𝑟 are given by: 
 

𝑐𝑟 = (2𝑟 + 1)∫ 𝑥(𝑡) 𝑝𝑟(𝑡) 𝑑𝑡    ; 𝑟 = 0,1,2, …
1

0
                    

(18) 
 

Finding the approximate solution 𝑥(𝑡) depends 
mainly on finding the constants 𝑐𝑟 as we will notice 
later. 

By considering the first (𝑚+1) terms of the series 
solution (Eq. 17), we get:  
 
x(𝑡) ≈ ∑ 𝑐𝑟  𝑝𝑟(𝑡)   

𝑚
𝑟=0                                                                 (19) 

 

and that gives: 
 
𝑥(𝑡) ≈ 𝑐0 𝑝0(𝑡) + 𝑐1 𝑝1(𝑡) + 𝑐2 𝑝2(𝑡) + ⋯+ 𝑐𝑚 𝑝𝑚(𝑡)   (20) 
 

and in matrix form, we can get: 
 
𝑥(𝑡) ≈ 𝐶𝑇𝑊(𝑡)                                                                            (21) 
 

where, 𝐶𝑇 = [𝑐0 , 𝑐1, … , 𝑐𝑚] is the shifted Legendre 
coefficients, 𝑊(𝑡) = [𝑝0(𝑡), 𝑝1(𝑡), … , 𝑝𝑚(𝑡)]𝑇 is the 
shifted Legendre vector. 

The derivative of the vector 𝑊(𝑡) can be 
expressed as: 
 
𝑑 𝑊(𝑡)

𝑑𝑡
= 𝐷(1) 𝑊(𝑡)                                                                      (22) 

where, 𝐷(1) is (𝑚 + 1) × (𝑚 + 1) operational 
differential matrix, which is given by: 
 

𝐷(1) = (𝑑𝑖𝑗) = {
4𝑗 − 2 ,   𝑖𝑓 𝑗 = 𝑖 − 𝑘
0         , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

                                   (23) 

 

where, 
 

𝑘 = {
1,3,5,…𝑚        𝑖𝑓  𝑚 𝑖𝑠 𝑜𝑑𝑑
1,3,5, …𝑚 − 1 𝑖𝑓 𝑚 𝑖𝑠 𝑒𝑣𝑒𝑛

                                           (24) 

 

In this work, we will consider 𝑚 = 4, then we get: 
 

𝐷(1) = (𝑑𝑖𝑗) = {
4𝑗 − 2 ,   𝑖𝑓 𝑗 = 𝑖 − 1 𝑜𝑟 𝑗 = 𝑖 − 3

0 ,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   
           (25) 

 

therefore, the operational differential matrix will be: 
 

𝐷(1) =

[
 
 
 
 
0 0 0
2 0 0
0
2
0

6
0
6

0
10
0

     

0
0
0
0
14

     

0
0
0
0
0]
 
 
 
 

                                                    (26) 

 

for the nth order derivative: 
 
𝑑𝑛𝑊(𝑡)

𝑑𝑡𝑛
= (𝐷(1))

𝑛
 𝑊(𝑡) = 𝐷(𝑛)𝑊(𝑡)   ;    𝑛 = 1, 2, 3,…  

               (27) 
 

where, (𝐷(1))
𝑛

 denotes the matrix powers. Thus, we 

can find: 
 

 

𝐷(2) = 𝐷(1) × 𝐷(1) =

[
 
 
 
 
0 0 0
0 0 0
12
0
40

0
60
0

0
0

140

     

0
0
0
0
0

     

0
0
0
0
0]
 
 
 
 

                   (28) 

 

therefore, we can get: 
 
𝑥(𝑡) = 𝐶𝑇 𝑊(𝑡)                                                                           (29) 

x′(t) =
d x(t)

dt
=

d CT W(t)

dt
= CT d W(t)

dt
                                       (30) 

𝑥′(𝑡) = 𝐶𝑇 𝐷(1) 𝑊(𝑡)                                                                 (31) 

 𝑥′′(𝑡) =
𝑑 𝑥′(𝑡)

𝑑𝑡
=

𝑑 𝐶𝑇 𝐷(1) 𝑊(𝑡)

𝑑𝑡
= 𝐶𝑇 𝑑 𝐷(1) 𝑊(𝑡)

𝑑𝑡
                   (32) 

 𝑥′′(𝑡) = 𝐶𝑇 𝐷(2) 𝑊(𝑡)                                                              (33) 

 
where, 
 
𝐶𝑇 = [ 𝑐0 , 𝑐1 , 𝑐2 , 𝑐3, 𝑐4]                                                            (34) 
𝑊(𝑡) = [ 𝑝0(𝑡) ,  𝑝1(𝑡) ,  𝑝2(𝑡) ,  𝑝3(𝑡),  𝑝4(𝑡)]

𝑇 .                  (35) 
 
Thus, we will conclude the following: 
 
 From Eq. 29, we find: 
 
𝑥(𝑡) = 𝐶𝑇 𝑊(𝑡)  

= [ 𝑐0 , 𝑐1 , 𝑐2 , 𝑐3, 𝑐4]
[ 𝑝0(𝑡) ,  𝑝1(𝑡) ,  𝑝2(𝑡) ,  𝑝3(𝑡),

 𝑝4(𝑡)]

𝑇

         (36) 

 

and that give: 
 
𝑥(𝑡) = 𝑐0 𝑝0(𝑡) + 𝑐1 𝑝1(𝑡) + 𝑐2 𝑝2(𝑡) + 𝑐3 𝑝3(𝑡) + 𝑐4 𝑝4(𝑡)  
                                                                                                         (37) 
 

 From Eq. 31, we find: 
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𝑥′(𝑡) = 𝐶𝑇 𝐷(1) 𝑊(𝑡)  

= [𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4]

[
 
 
 
 
0 0 0
2 0 0
0
2
0

6
0
6

0
10
0

     

0
0
0
0
14

     

0
0
0
0
0]
 
 
 
 

 

[
 
 
 
 
 𝑝0(𝑡)

 𝑝1(𝑡)

 𝑝2(𝑡)

 𝑝3(𝑡)

 𝑝4(𝑡)]
 
 
 
 

              (38) 

 

and that gives: 
 
𝑥′(𝑡) = 2𝑐1𝑝0(𝑡) + 2𝑐3𝑝0(𝑡) + 6𝑐2𝑝1(𝑡) + 6𝑐4𝑝1(𝑡) +
10𝑐3𝑝2(𝑡) + 14𝑐4𝑝3(𝑡)                                                              (39) 

 
 From Eq. 33, we find: 
 

 𝑥′′(𝑡) = 𝐶𝑇 𝐷(2) 𝑊(𝑡)  

= [𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4]

[
 
 
 
 
0 0 0
0 0 0
12
0
40

0
60
0

0
0

140

     

0
0
0
0
0

     

0
0
0
0
0]
 
 
 
 

[
 
 
 
 
 𝑝0(𝑡)

 𝑝1(𝑡)

 𝑝2(𝑡)

 𝑝3(𝑡)

 𝑝4(𝑡)]
 
 
 
 

  (40) 

 

and that gives: 
 
 𝑥′′(𝑡) = 12𝑐2𝑝0(𝑡) + 40𝑐4𝑝0(𝑡) + 60𝑐3𝑝1(𝑡) + 140𝑐4𝑝2(𝑡) 
                                                                                                         (41) 
 

Now, by using Eqs. 37, 39, and 41 we can find the 
residual function 𝑅(𝑡) of problem 15 as follows: 
 

𝑅(𝑡) = 𝑥′′(𝑡) − 𝑓( 𝑡, 𝑥(𝑡),  𝑥′(𝑡))                                           (42) 

𝑅(𝑡) = 12𝑐2𝑝0(𝑡) + 40𝑐4𝑝0(𝑡) + 60𝑐3𝑝1(𝑡) +

140𝑐4𝑝2(𝑡) − 𝑓( 𝑡, 𝑐0 𝑝0(𝑡) + 𝑐1 𝑝1(𝑡) + 𝑐2 𝑝2(𝑡) +

𝑐3 𝑝3(𝑡) + 𝑐4 𝑝4(𝑡), 2𝑐1𝑝0(𝑡) + 2𝑐3𝑝0(𝑡) + 6𝑐2𝑝1(𝑡) +

6𝑐4𝑝1(𝑡) + 10𝑐3𝑝2(𝑡) + 14𝑐4𝑝3(𝑡)).                                     (43) 

 

Then, we apply Tau method, which can be defined as: 
 

∫ 𝑅(𝑡) 𝑝𝑟(𝑡) 𝑑𝑡 = 0     ; 𝑟 = 0,1,2,… ,𝑚 − 2
1

0
.                      (44) 

 

For 𝑚 =4 , we get: 
 

∫ 𝑅(𝑡) 𝑝0(𝑡) 𝑑𝑡 = 0     
1

0
                                                             (45) 

∫ 𝑅(𝑡) 𝑝1(𝑡) 𝑑𝑡 = 0     
1

0
                                                             (46) 

∫ 𝑅(𝑡) 𝑝2(𝑡) 𝑑𝑡 = 0
1

0
.                                                                 (47) 

 

From Eqs. 45, 46, and 47, we can get three linear 
or nonlinear equations. In addition, two linear 
equations can be found by applying the initial 
conditions (Eq. 16). 

Therefore, we will get a system of five linear 
equations or a system of five non-linear equations, 
then by solving these equations, we will obtain the 
constants: 
 
 𝑐0 , 𝑐1 , 𝑐2 , 𝑐3 and 𝑐4. 
 

Through these constants, the approximate-
analytical solution of problem 15 can be obtained, 
which is: 
 
𝑥(𝑡) ≈ 𝑐0 𝑝0(𝑡) + 𝑐1 𝑝1(𝑡) + 𝑐2 𝑝2(𝑡) + 𝑐3 𝑝3(𝑡) + 𝑐4 𝑝4(𝑡).  
                                                                                                         (48) 
 

Anyone can redo the above description if 𝑚 is not 
equal to 4, or if the ODE is a boundary value 
problem. 

4. Applied examples 

In this section, we will solve four applied 
examples. These examples varied between linear and 
nonlinear first-order ODE and linear and nonlinear 
second-order ODE. To show the accuracy of the used 
method, we compute the absolute error:  
 

𝑒𝑟𝑟𝑜𝑟  = |𝑥𝑒𝑥𝑎𝑐𝑡(t) − 𝑥𝑎𝑝𝑝(t) |  

 

where, 𝑥𝑎𝑝𝑝(t)  is the approximate solution that we 

found. 
 

Example 1: Consider the first order linear ODE: 
 
 𝑥′(𝑡) = 𝑡2 − 𝑥(𝑡)    ;    𝑡 ∈ [0,1]  
 

with: 
 
𝑥(0) = 1  

 
Solution: By deriving the equation, we get: 
 
 𝑥′′(𝑡) = 2𝑡 −  𝑥′(𝑡)   
 

with: 
 
𝑥(0) = 1   ;    𝑥′(0) = −1.      
 

From Eq. 48, we describe the approximate solution 
as: 
 
𝑥(𝑡) = 𝑐0 𝑝0(𝑡) + 𝑐1 𝑝1(𝑡) + 𝑐2 𝑝2(𝑡) + 𝑐3 𝑝3(𝑡) + 𝑐4 𝑝4(𝑡).   
 

By applying the Eqs. 9-13, we obtain: 
 
𝑥(𝑡) = 𝑐0(1) + 𝑐1(2𝑡 − 1) + 𝑐2(6𝑡2 − 6𝑡 + 1) +
𝑐3(20𝑡3 − 30𝑡2 + 12𝑡 − 1) + 𝑐4(70𝑡4 − 140𝑡3 + 90𝑡2 −
20𝑡 + 1).    
 

Now, we find the residual function 𝑅(𝑡): 
 
 𝑥′′(𝑡) +  𝑥′(𝑡) − 2𝑡 = 0    
𝑅(𝑡) =  𝑥′′ (𝑡) +  𝑥′(𝑡) − 2𝑡.   
 

By substituting the Eqs. 39 and 41, we obtain:  
 
𝑅(𝑡) = 12𝑐2𝑝0(𝑡) + 40𝑐4𝑝0(𝑡) + 60𝑐3𝑝1(𝑡) +
140𝑐4𝑝2(𝑡) + 2𝑐1𝑝0(𝑡) + 2𝑐3𝑝0(𝑡) + 6𝑐2𝑝1(𝑡) + 6𝑐4𝑝1(𝑡) +
10𝑐3𝑝2(𝑡) + 14𝑐4𝑝3(𝑡) − 2𝑡.   
 

Now, we apply the Eqs. 45, 46, and 47: 
 

 ∫ 𝑅(𝑡) 𝑝0(𝑡) 𝑑𝑡 = 0
1

0
.   

 

Which simplifies into: 
 
2𝑐1 + 12𝑐2 + 2𝑐3 + 40𝑐4 = 1.   
 

 ∫ 𝑅(𝑡) 𝑝1(𝑡) 𝑑𝑡 = 0 
1

0
. 
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Which simplifies into: 
 

2𝑐2 + 20𝑐3 + 2𝑐4 =
1

3
       

 

 ∫ 𝑅(𝑡) 𝑝2(𝑡) 𝑑𝑡 = 0
1

0
. 

 

Which simplifies into: 
 
𝑐3 + 14𝑐4 = 0. 
 

Moreover, we apply the initial conditions to get:  
 
𝑐0−𝑐1 + 𝑐2 − 𝑐3 + 𝑐4 = 1    
2𝑐1 − 6𝑐2 + 12𝑐3 − 20𝑐4 = −1.   
 

Therefore, we have the following system of linear 
equations: 
 
2𝑐1 + 12𝑐2 + 2𝑐3 + 40𝑐4 = 1  

2𝑐2 + 20𝑐3 + 2𝑐4 =
1

3
  

𝑐3 + 14𝑐4 = 0  
𝑐0−𝑐1 + 𝑐2 − 𝑐3 + 𝑐4 = 1  
2𝑐1 − 6𝑐2 + 12𝑐3 − 20𝑐4 = −1.  
 

By solving the above system, we get: 
 
𝑐0 = 0.701208981001727 
𝑐1 = −0.189119170984456 
𝑐2 = 0.115223291389095 
𝑐3 = 0.005181347150259 
𝑐4 = −0.000370096225019. 
 

Then, the approximate-analytical solution is: 
 
𝑥(𝑡) = 1 − 𝑡 + (0.502590673575090)𝑡2 +
(0.155440414507840)𝑡3  − (0.025906735751330)𝑡4.  
 

The exact-analytical solution is: 
 
𝑥(𝑡) = 𝑡2 − 2𝑡 + 2 − 𝑒−𝑡. 
 

A numerical solution for this problem can be 
found in Table 1. 

 
Table 1: Numerical result for example 1 

𝑡 𝑥𝑎𝑝𝑝(t) error 

0 1 0 
0.000275 0.999725038011652 1.96 e-10 
0.000550 0.999450152059538 7.82 e-10 
0.000825 0.999175342163047 1.76 e-9 
0.001100 0.998900608341568 3.12 e-9 
0.001375 0.998625950614484 4.87 e-9 
0.001650 0.998351369001174 7.00 e-9 
0.001925 0.998076863521017 9.52 e-9 
0.002200 0.997802434193383 1.24 e-8 
0.002475 0.997528081037643 1.57 e-8 
0.002750 0.997253804073162 1.94 e-8 

 

The researcher Islam (2015) solved this problem 
using the fourth-order Runge-Kutta method for 
different values of h, where the absolute error 
ranged between 3.01e-11-10.51e-7. 

 
Example 2: Consider the following first order non-
linear ODE: 
 
 𝑥′(𝑡) = 1 + 𝑡2 − 𝑥2(𝑡)       ;     𝑡 ∈ [0, 4]. 

 

With: 
 

𝑥(0) = 1  

 
Solution: By deriving the equation, we get: 
 
𝑥′′(𝑡)  = 2𝑡 −  2𝑥(𝑡)𝑥′(𝑡). 
 

With: 
 
𝑥(0) = 1     ;    𝑥′(0) = 0. 
 

From Eq. 48, we describe the approximate 
solution as: 
 
𝑥(𝑡) = 𝑐0 𝑝0(𝑡) + 𝑐1 𝑝1(𝑡) + 𝑐2 𝑝2(𝑡) + 𝑐3 𝑝3(𝑡) + 𝑐4 𝑝4(𝑡). 
 

By applying the Eqs. 9-13, we obtain: 
 
𝑥(𝑡) = 𝑐0(1) + 𝑐1(2𝑡 − 1) + 𝑐2(6𝑡2 − 6𝑡 + 1) +
𝑐3(20𝑡3 − 30𝑡2 + 12𝑡 − 1) + 𝑐4(70𝑡4 − 140𝑡3 + 90𝑡2 −
20𝑡 + 1).  
 

Now, we find the residual function 𝑅(𝑡): 
 
 𝑥′′(𝑡) +  2𝑥(𝑡)𝑥′(𝑡) − 2𝑡 = 0    
𝑅(𝑡) =  𝑥′′ (𝑡) +  2𝑥(𝑡)𝑥′(𝑡) − 2𝑡. 
 

By substituting the Eqs. 39 and 41, we obtain:  
 
𝑅(𝑡) = 12𝑐2𝑝0(𝑡) + 40𝑐4𝑝0(𝑡) + 60𝑐3𝑝1(𝑡) +
140𝑐4𝑝2(𝑡) + 2[(2𝑐1𝑝0(𝑡) + 2𝑐3𝑝0(𝑡) + 6𝑐2𝑝1(𝑡) +
6𝑐4𝑝1(𝑡) + 10𝑐3𝑝2(𝑡) + 14𝑐4𝑝3(𝑡))(𝑐0 𝑝0(𝑡) + 𝑐1 𝑝1(𝑡) +
𝑐2 𝑝2(𝑡) + 𝑐3 𝑝3(𝑡) + 𝑐4 𝑝4(𝑡))] − 2𝑡. 
 

Now, we apply the Eqs. 45, 46, and 47: 
 

 ∫ 𝑅(𝑡) 𝑝0(𝑡) 𝑑𝑡 = 0
1

0
. 

 
Which simplifies into: 

 
2𝑐0𝑐1 + 2𝑐0𝑐3 + 2𝑐2𝑐1 + 2𝑐4𝑐1 + 2𝑐2𝑐3 + 2𝑐3𝑐4 + 6𝑐2 +

20𝑐4 −
1

2
= 0   

 

 ∫ 𝑅(𝑡) 𝑝1(𝑡) 𝑑𝑡 = 0
1

0
. 

 

Which simplifies into: 
 
2

3
𝑐1

2 + 2𝑐0𝑐2 + 2𝑐0𝑐4 + 2𝑐3𝑐1 + 2𝑐4𝑐1 + 2𝑐2𝑐4 +
4

5
𝑐2

2 +
6

7
𝑐3

2 +
8

9
𝑐4

2 +  10𝑐3 −
1

6
= 0.  

 

 ∫ 𝑅(𝑡) 𝑝2(𝑡) 𝑑𝑡 = 0
1

0
. 

 
Which simplifies into: 

 

2𝑐0𝑐3 +
6

5𝑐2𝑐1
+ 2𝑐4𝑐1 +

52

35
𝑐2𝑐3 +

34

21
𝑐3𝑐4 + 14𝑐4 = 0   

 

Moreover, we apply the initial conditions to get:  
 
𝑐0−𝑐1 + 𝑐2 − 𝑐3 + 𝑐4 = 1  
𝑐1 − 3𝑐2 + 6𝑐3 − 10𝑐4 = 0. 
    

Therefore, we have the following system of non-
linear equations: 
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2𝑐0𝑐1 + 2𝑐0𝑐3 + 2𝑐2𝑐1 + 2𝑐4𝑐1 + 2𝑐2𝑐3 + 2𝑐3𝑐4 + 6𝑐2 +

20𝑐4 −
1

2
= 0   

2

3
𝑐1

2 + 2𝑐0𝑐2 + 2𝑐0𝑐4 + 2𝑐3𝑐1 + 2𝑐4𝑐1 + 2𝑐2𝑐4 +
4

5
𝑐2

2 +
6

7
𝑐3

2 +
8

9
𝑐4

2 +  10𝑐3 −
1

6
= 0  

2𝑐0𝑐3 +
6

5𝑐2𝑐1
+ 2𝑐4𝑐1 +

52

35
𝑐2𝑐3 +

34

21
𝑐3𝑐4 + 14𝑐4 = 0  

𝑐0−𝑐1 + 𝑐2 − 𝑐3 + 𝑐4 = 1      
𝑐1 − 3𝑐2 + 6𝑐3 − 10𝑐4 = 0.  
 

By solving the above system, we get: 
 
𝑐0 = 1.057788802033481 
𝑐1 = 0.099655382508691 
𝑐2 = 0.048805452205811 
𝑐3 = 0.005656935799317 
𝑐4 = −0.001218935931284. 
 

Then, the approximate-analytical solution is: 
 
 𝑥(𝑡) = 1 + (0.007750405439796)𝑡2  +
 (0.292609746366100)𝑡3 − (0.089735515189880)𝑡4. 
 

The exact-analytical solution is: 
 

𝑥(𝑡) = 𝑡 +
𝑒−𝑡2

1+∫ 𝑒−𝑣2
𝑑𝑣

𝑡

0

 .    

 

Numerical results for this problem can be found 
in Table 2. 

 
Table 2: Numerical result for example 2 

𝑡 𝑥𝑎𝑝𝑝(t) error 

0 1 0 
0. 000017 1.000000000002241 2.24 e-12 
0.000034 1.000000000008971 8.96 e-12 
0.000051 1.000000000020198 2.02 e-11 
0.000068 1.000000000035930 3.58 e-11 
0.000085 1.000000000056176 5.60 e-11 
0.000102 1.000000000080946 8.06 e-11 
0.000119 1.000000000110247 1.10 e-10 
0.000136 1.000000000144088 1.43 e-10 
0.000153 1.000000000182477 1.81 e-10 
0.000170 1.000000000225424 2.24 e-10 

 

The researchers Geng et al. (2009) solved this 
problem using the piecewise variational iteration 
method, where the absolute error ranged 
approximately between 1.00e-10-8.00e-9. 

 
Example 3: Consider the second order linear ODE: 
 
 𝑥′′(𝑡) + 4𝑥(𝑡) = 𝑠𝑖𝑛3𝑡         ;      𝑡 ∈ [0, 2].   
 

With: 
 
𝑥(0) = 1    ;    x′(0) = 2   
 

Solution: In the same way that we have used in the 
previous examples, we find the residual function 
𝑅(𝑡): 
 
𝑅(𝑡) = 12𝑐2𝑝0(𝑡) + 40𝑐4𝑝0(𝑡) + 60𝑐3𝑝1(𝑡) +
140𝑐4𝑝2(𝑡) + 4𝑐0 𝑝0(𝑡) + 4𝑐1 𝑝1(𝑡) + 4𝑐2 𝑝2(𝑡) +
4 𝑝3(𝑡) + 4𝑐4 𝑝4(𝑡) − 𝑠𝑖𝑛3𝑡.  
 

Now, we apply the Eqs. 45, 46, and 47 and the 
initial conditions to get the following system of 
linear equations: 

𝑐0 + 3𝑐2 + 10𝑐4 =
1

12
−

1

12
𝑐𝑜𝑠3 = 0     

𝑐1 + 15𝑐3 =
1

6
𝑠𝑖𝑛3 −

1

4
𝑐𝑜𝑠3 −

1

4
= 0  

𝑐2 + 35𝑐4 =
5

6
𝑠𝑖𝑛3 +

5

36
𝑐𝑜𝑠3 −

5

36
= 0  

𝑐0−𝑐1 + 𝑐2 − 𝑐3 + 𝑐4 = 1   
𝑐1 − 3𝑐2 + 6𝑐3 − 10𝑐4 = 1.    
 

By solving the above system, we get: 
 
𝑐0 = 1.242589382390501 
𝑐1 = −0.141939874229722 
𝑐2 = −0.379985319711381 
𝑐3 = 0.010863866482100 
𝑐4 = 0.006319927939368. 
 

Then, the approximate-analytical solution is: 
 
𝑥(𝑡) = 1 + 2𝑡 − (2.037034392371466)𝑡2 −
(0.667512578547320)𝑡3 + (0.442394955755760)𝑡4.  
 

The exact-analytical solution is: 
 

𝑥(𝑡) = 𝑐𝑜𝑠2𝑡 + 1.3𝑠𝑖𝑛2𝑡 − 0.2𝑠𝑖𝑛3𝑡.   
 

A numerical solution for this problem can be 
found in Table 3. 

The researchers Hossain et al. (2017) solved this 
problem using Putcher's fifth-order Runge-Kutta 
method for different values of h, where the absolute 
error ranged between 4.46e-13-4.18e-7. 

 
Example 4: Consider the second order non-linear 
ODE: 
 

 𝑥′′(𝑡) = −(1 + ( 𝑥′′(𝑡))
2
)   ;      𝑡 ∈ [0, 1]            

With: 𝑥(0) = 1    ;    𝑥(1) = 0.    
 

Solution: In the same way that we have used in the 
previous examples, we obtain the approximate 
analytical solution: 
 
𝑥(𝑡) =      1 − (0.743668661762932)𝑡 −
(0.234407900119338)𝑡2 − (0.043846756112060)𝑡3 
+(0.021923303678080)𝑡4.   
 

This problem has no exact solution. Hence, it is 
clear to us the importance of the used method, as 
this method provides an accurate approximate 
solution that can be used as an effective alternative 
to the exact solution. 

5. Conclusion 

The approximate solutions that we obtained 
during this work are accurate solutions and very 
close to the exact solutions, based on the comparison 
that we made between our results and the exact 
solutions. This comparison was based on finding the 
absolute error and then comparing it with the 
absolute error calculated by other approximate 
methods. Hence, the importance of the method 
becomes clear to us, as this method provides an 
accurate approximate solution that can be used as an 
effective alternative to the exact solution if it does 
not exist. For the next works, one can use this 
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method to solve partial (and fuzzy) differential 
equations. 

 
Table 3: Numerical result for example 3 

𝑡 𝑥𝑎𝑝𝑝(t) error 

0 1 0 
0. 000125 1.000249968170034 5.78 e-10 
0.000250 1.000499872674922 2.31 e-9 
0.000375 1.000749713506846 5.20 e-9 
0.000500 1.000999490657990 9.24 e-9 
0.000625 1.001249204120541 1.44 e-8 
0.000750 1.001498853886687 2.08 e-8 
0.000875 1.001748439948621 2.82 e-8 
0.001000 1.001997962298538 3.69 e-8 
0.001125 1.002247420928633 4.66 e-8 
0.001250 1.002496815831106 5.75 e-8 
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