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This paper proposes a novel hybrid algorithm called Genetic Algorithm based 
Simplex Adaptive Hooke and Jeeves (GA-SAHJ) method for solving equality 
constrained non-linear optimization problems. The proposed hybrid 
technique uses Genetic Algorithm (GA) as the global optimizer and a 
modified Hooke and Jeeves method for further refinements of the current 
solution within the landscape of a feasible region. The convergence proof of 
the modified approach is also provided. The effectiveness of the proposed 
GA-SAHJ method is demonstrated by applying it on six test instances each 
involving at least one equality constraint. The results witness that the 
proposed hybrid approach is capable of producing highly accurate and fully 
feasible solutions of the considered problems. 
 

Keywords: 
Derivative free methods 
Hooke-Jeeves method 
Genetic algorithm 
Hybrid method 

© 2018 The Authors. Published by IASE. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

 

1. Introduction  

*The general optimization problem can be written 
as follow: 
 

minimize              f( x )                                                         

subject to             hj( x ) = 0,                   (j = 1,2, ⋯ , J)

                                  gk( x ) ≤ 0,                  (k = 1,2, ⋯ , K)

}  (A) 

 

where f( x ), hj( x ) and gk( x ) are functions of the 

design vector: x = (x1, x2, ⋯ , xd)
T

 and x ∈ 
d

. 

Here each component xi of x are called design or 

decision variables, and they can be real continuous, 

discrete, or a mix of these two. The functions f(x) is 

called the objective function or simply cost functions. 
The space spanned by the decision variables is called 
the design space or search space, whereas the space 
formed by the objective function values is called the 
solution space or response space. The equalities for 
hj( x ) and inequalities for gk( x ) are called 

constraints (Koziel and Yang, 2011). 
It has been reported that the approaches like 

gradient based methods, linear programming and 
sequential quadratic programming perform poorly 
due to non-availability of derivatives, discontinuities 
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and multiple local minima (Miettinen et al., 2003). 
The derivative free methods, Hooke-Jeeves, Nelder-
Mead Simplex and multidirectional search methods 
were used to obtain the optimal truss designs (Saeed 
et al., 2016). Tabassum et al. (2015) optimized the 
design of oxygen production system by using the 
Hooke-Jeeves, Nelder-Mead Simplex method 
(Tabassum et al., 2015) and the same problem by 
differential evolution along with 2-paramer 
exponential penalty function approach that gave 
slightly better results (Tabassum et al. 2016). There 
exist some examples on which the Nelder-Mead 
Simplex Algorithm method failed to find optimal 
solutions. Ali et al. (2017) proposed a simplex 
volume based novel strategy for rescuing the method 
from stagnations or complete failures. There are 
examples where these methods have successfully 
been applied to the problems involving variables up 
to few hundreds. In recent decades, DFMs have 
successfully been applied in multiple areas of 
engineering design, scheduling, bio-systems, 
molecular biology, neural networks, decision making 
and Image processing problems. Some well-known 
DFMs can be found in (Conn et al., 2009; Belegundu 
and Chandrupatla, 2011; Deb, 2004; Rao, 1996). 
These methods highly depend on provided initial 
guess to start and aim at local search. Moreover their 
performances depend strongly on the dimensions of 
optimization problems. Generally derivative free 
algorithms are designed for unconstrained 
optimization; therefore, they cannot be applied to 
constrained problems directly. The application of 
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DFMs to an unconstrained problem (A) is possible 
only if an equivalent unconstrained is formed. 
Among the several methods of constraint handling 
approaches, penalties functions are the most 
common approaches in the evolutionary algorithms 
to handle almost all of the types of constraints 
(equality and inequality). This approach embeds 
constraints into the objective function and designs 
an equivalent unconstrained problem. The 
embedded part is comprised of positive multiples of 
degrees of constraint violations act as penalization to 
the algorithm for exploring any infeasible solution 
(Bertsekas, 1982; Joines and Houck, 1994; 
Michalewicz and Janikow, 1991).  

Penalty functions also inherit some drawbacks, 
such as non-optimal tuning of penalty parameters 
and raised complexity, high non-linearity, non-
convexity or non-differentiability of resulting 
objective function. For example the main drawback 
of both of annealing penalty (Kirkpatrick et al., 1983) 
and static penalty function is a high number of 
parameters which require careful fine tune for better 
results (Michalewicz, 1995). In dynamic penalties 
the quality of the obtained solution is very sensitive 
to changes in its fixed constants and there are no 
clear guidelines regarding the sensitivity of the 
approach to different values of constants (Smith and 
Coit, 1997). The drawback of adaptive penalties is 
the issue of choosing the generational gap that 
provides reasonable information to guide the search 
(Rasheed, 1998). In the practical applications of co-
evolutionary penalties in EAs, there arise necessities 
of four additional highly sensitive parameters 
(Coello, 1999; 2000), making it difficult to use. Death 
penalty is confined by not explaining and exploiting 
any kind of information from the infeasible points 
that can be produced by the EA to supervise and lead 
the search (Coit and Smith, 1996). In In genetic 
algorithms a 2-paramer exponential penalty function 
approach was used for handling equality and 
inequality constraints which provided comparable 
results on various well known constraint 
optimization problems (Chaudhry et al., 2009). 
Boudjehem et al. (2011) gave the idea to reduce the 
dimension of the optimization problem to a mono-
dimensional that equipped new algorithm with the 
ability to determine a narrow space around the 
global optimum by reducing the number of 
evaluations.  

Genetic algorithm (GA) and Hooke and Jeeves 
(HJ) method both are not free from encountering 
similar drawbacks when applied to the penalized 
objective function, especially when linear equality 
constraint is accompanied. Linear equality constraint 
constitutes narrow feasible region and hence 
appears to be resistant to global explorations of GA 
and local explorations of the moves of HJ method 
which can be noticed from Fig. 1. In this way GA and 
HJ may fail without making a single improvement in 
the objective function value.  

To overcome the shortcomings of HJM and GA on 
equality constrained problems their hybrid approach 
is needed to be constructed. Hybridization of 

different algorithms by uniting their strengths is an 
effective approach in meta-heuristics, especially in 
evolutionary algorithms. The examples of such 
hybridization can be found in (Miettinen et al., 2003; 
Bertsekas, 1982; Coit and Smith, 1996; Hooke and 
Jeeves, 1961; Coelho and Mariani, 2009). Pandian 
(2010) proposed a meta-hetaeristic approach by 
hybridizing simulated annealing and genetic 
algorithm to search for the best feasible solutions to 
the decision variables for solving a nonlinear 
objective function in industrial management 
problems. 

 

 
Fig. 1: Stagnation of HJM to a non-optimal point 

 
In this paper we modify HJM by utilizing 

advantages of equality constraints rather than 
eliminating it. The modified HJM is named as Simplex 
Adaptive HJM (SAHJ) method. The proposed SAHJM 
is further hybridized with GA for global search and 
the resulting method is named as Genetic Algorithm 
based Simplex Adaptive Hooke-Jeeves (GA-SAHJ) 
method. 

Rest of the paper is organized as follows. Section 
2 exhibits the basic concepts, definitions and the 
construction of SAHJ algorithm, in Section 3 the 
convergence proof of SAHJ for unconstrained 
optimization problems is presented; Section 4 
consists of flowchart of the proposed hybrid GA-
SAHJ algorithm and numerical examples are 
presented in Section 5. In the last section, some 
concluding remarks are also presented. 

2. Simplex adaptive Hooke and Jeeves method 
(SAHJ) 

The proposed modification concerns with the 
constrained problems involving a linear equality 
constraint of the form: 
 

g(x) =  u . x − b = 0                     (1) 

 
Such a constraint defines hyper-plane with a 

normal u in the search space. For each of such hyper 

planes one or more members of the basis of search 
space become redundant. Therefore, the effective 
dimensions of the feasible region determined by (1) 
become lesser than those of the optimization 
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problem. We require a set of linearly independent 
vectors which span the feasible region and lie in 
planes parallel to (1). Once an initial guess lying in 
the feasible region is found then the proposed 
scheme guarantees that no infeasible point is 
explored. Following assumptions are important for 
practicability of the scheme. 

 
Assumption 2.1: The hyper-plane (1) does not pass 
through the origin i.e.; b ≠ 0.  
 
Assumption 2.2: The normal u is such that  ui ≠ 0 ∶

1 ≤ i ≤ n.  
 

The assumption 2.1 is quite possible because 
otherwise a parallel hyper-plane with arbitrary non-
zero b can be used. The proposed modified algorithm 
requires bases of the hyper-plane through origin and 
parallel to (1). We will refer such bases as parallel 
bases. The assumption 2.2 is concerned with the case 
when any ui = 0 which will be addressed in coming 
sections. The equality constraint (1) can be 
expressed as: 
 
∑ uixi

n
i=1 = b  

 

Assumptions 1 and 2 guarantee the existence of 

distinct points   P(i) =  (x1
(i), x2

(i)
, x3

(i), . . . , xn
(i)), 1 ≤ i ≤

n such that:  
 

xj
(i)

=  {

b

uj
       if  j = i

0        if  j ≠ i
  

 

These points along with the origin form a non-
degenerate simplex in Rn. The face opposite to the 
origin is a part of the hyper-plane (1). Replacing the 
origin by centroid of its opposite face we get a 
degenerate simplex in Rn but it is a non-degenerate 
n-simplex in hyper-plane (1) whose active 
dimensions are (n-1). 

 
Definition 2.1: By inactive search direction we 
mean any direction d such that 

 
u . d ≠ 0  

 
Inactiveness is based on the fact that such a 

direction does not help in reducing the efforts of 
exploration of the points in the feasible region of the 
problem involving (1). 

 
Definition 2.2: The Constrained Minimum. A point 
x∗ is said to be a stationary point of f(x) subject to 

g(x) = u. x − b = 0 if there is a non-zero scalar 

κ∗such that∇ f(𝐱∗) = κ∗∇ g(𝐱∗), where κ∗ is called 

Lagrange multiplier (Joines and Houck, 1994). 

3. SAHJ algorithm 

The following steps interpret the exploitation of 
the sub-simplex for determination of search 

directions which form the active spanning set of the 
hyper-plane (1).  

 
Step 1: Choose the HJ parameter: 

 
∆ = [∆1, ∆2, ∆3, … ,  ∆n], 0 < α < 1, λ > 1, 

 
termination parameter:  ξ, Initial guess: x(o).  

 
Set m = 1. 

 
Step 2: (a) Translate x(o)to the hyper-plane by 

 
z =   x(o) − [⟨u  , x(o)⟩   − b]

u

||u ||2  

 
(b) Set x b  = z.  

(c) Find the vertices of sub-simplex and compute its 

centroid G =
1

n
∑ P(i)n

i=1  

(d) Computev i = G − P(i), 1 ≤ i ≤ n and construct n 

possible parallel bases of ( n − 1) distinct𝐯 i. 

 
Step 3: Choose mth parallel basis and apply Gram-
Schmidt process to get 

 
di ∶ 1 ≤  i ≤ (n − 1) . 

 
Step 4: Is || ∆|| < ξ ? If yes, Terminate. Else Go to 

Step 5. 
 

Step 5: Perform an exploratory move on x b to get x.  

 
If   f( x ) < f( x b), set x e =  x and Go to step 6; 

else set = . Set m = mod(m, n) + 1  and go to Step 
3. 

 
Step 6: Findx p =  x b + λ ( x e − x b) and apply 

another exploratory move with x p as the base point. 

Suppose x E is the result. Go to step 7. 

 
Step 7: If  f( x E) < f( x e), set x b =  x e, x e =  x E and 

Go to step 6; else set x b =  x e, = α and Go to step 

4. 
 
The proposed SAHJ differs from HJ method in 

following three aspects. 
 

(i) The step length reduction parameter α is chosen 
randomly in the range [0.5, 1). 

(ii) The search directions may not be along 
coordinate axes and are fewer than the 
dimensions. 

(iii) The set of search directions is updated after 
every failed exploratory move at step 5. 

4. Convergence of SAHJ method 

Before establishing main convergence results of 
the algorithm we state and prove two important 
results which will be helpful in proving convergence 
of the proposed algorithm. 
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Claim 4.1: The search directions generated by SAHJ 
at step 2 are all active. 

 
Proof: According to the definition (1), we need to 
show that each v i is orthogonal tou. 
 

u . v i = u . (G − P(i))  

= u . ( 
1

n
∑ P(j)n

j=1 − P(i))  

=
1

n
∑ u . (P(j)n

j=1 − P(i))  

=
1

n
∑ (( u . P(j) − bn

j=1 ) − (u . P(i) − b)) = 0  

 
Which shows that every v i lies in some hyper-

plane parallel to (1). 
 

Claim 4.2: The algorithm SAHJ can generate the 
points lying only in the hyper-plane (1). 

 
Proof: The step 2 (a), 2(b) ensure that SAHJ starts 
with a feasible initial guess. Consider the initial guess 
be x b. Claim 3.1 guarantees that step 2 (d) generate 

only active search directions. On contrary suppose 
that there is a step length ∆kand a direction d k such 

that the point x b + ∆kd k generated by exploratory 

move does not lie in the feasible region of (7), i.e., 
 

u . (x b + ∆kd k) − b ≠ 0  

⇒ u .  d k ≠ 0   
 

That is contradiction to the activeness of d k. Now 

we step forward to our main convergence results 
with following two assumptions. 

 

Assumption 4.1: The set A = {x ∶ f(x) = r;   r ∈ R} ∩

{x: g(x) = 0} is compact and the function f(x) is 

continuously differentiable on A.  
 

Assumption 4.2: The provided initial guess lies 
within the box constraints and there is a unique 
stationary point in a finite neighbor-hood of the 
point 

 
z =   x(o) − [⟨u  , x(o)⟩   − b]

u

||u ||2. 

 
Main result: Under the assumptions 2.1, 2.2, 3.1 and 
3.2 the algorithm SAHJ converges to a stationary 
point of f(x) subject to  g(x) = 0 and    xi

L < xi <

xi
U;  xi

L , xi, 𝑥𝑖
𝑈 ∈ 𝑅. 

 
Proof: The initial guess provided to the algorithm 
lies within the box constraints. Step 2 (a) translates 
the initial guess to the feasible region. By claim 3.1 
the algorithm generates only active search directions 
and claim 3.2 ensures that the algorithm can 
generate only feasible points. Algorithm generates a 
set of (n – 1) linearly independent active search 
direction. This set can be extended to a basis of 𝑅𝑛by 

including only one element, namely 𝑑 𝑛 =
𝑢

|𝑢|
. Every 

exploratory move along 𝑢 with non-zero step length 

generates an infeasible point. Using penalized 
objective function such a point results in an 

unsuccessful exploratory move. Suppose at any 

iteration 𝑘𝑜the current base point be 𝑥 𝑏
(𝑘𝑜)

. 

The proof is dependent on the successful and 
unsuccessful exploratory moves. Suppose that the 
exploratory moves are unsuccessful for iterations 
𝑘𝑜+ 1, 𝑘𝑜+ 2, 𝑘𝑜+ 3, …. Then for any j >𝑘𝑜, the current 

base point 𝑥 𝑏
(𝑗)

is the same as 𝑥 𝑏
(𝑘𝑜)

and is such that: 
 

𝑚𝑖𝑛
1≤𝑖≤𝑛

{𝑓 (𝑥 𝑏
( 𝑗−1)

± 𝛼(𝑗−1) ∆𝑖𝑑 𝑖)} ≥ 𝑓 (𝑥 𝑏
( 𝑗−1)

)  

𝑚𝑖𝑛
1≤𝑖≤𝑛

{𝑓 (𝑥 𝑏
(𝑘𝑜)

± 𝛼(𝑗−1) ∆𝑖𝑑 𝑖)}  ≥ 𝑓 (𝑥 𝑏
(𝑘𝑜)

)  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗  

 
first consider 
 

 𝑓 (𝑥 𝑏
(𝑘𝑜)

+ 𝛼(𝑗−1) ∆𝑖𝑑 𝑖) − 𝑓 (𝑥 𝑏
(𝑘𝑜)

) ≥ 0  𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖  

𝑓(𝑥 𝑏
(𝑘𝑜)

+𝛼(𝑗−1) ∆𝑖𝑑 𝑖)−𝑓(𝑥 𝑏
(𝑘𝑜)

)

𝛼(𝑗−1) ∆𝑖
≥ 0  

 

as 𝑗 → ∞ then 𝛼(𝑗−1) → 0   this implies that 
 

(𝛻 𝑓 (𝑥 𝑏
(𝑘𝑜)

))
𝑇

.  𝑑 𝑖  ≥ 0                                (2) 

 
similarly 

 

  𝑓 (𝑥 𝑏
(𝑘𝑜)

− 𝛼(𝑗−1) ∆𝑖𝑑 𝑖) − 𝑓 (𝑥 𝑏
(𝑘𝑜)

) ≥ 0  

 
implies that 
 

(𝛻 𝑓 (𝑥 𝑏
(𝑘𝑜)

))
𝑇

.  𝑑 𝑖  ≤ 0                    (3) 

 
from (2) and (3) 

 

(𝛻 𝑓 (𝑥 𝑏
(𝑘𝑜)

))
𝑇

.  𝑑 𝑖  = 0 , 𝑓𝑜𝑟 𝑖 = 1, 2, 3, … , (𝑛 − 1)  

 

Now we consider that 𝑥 𝑏
(𝑘𝑜)

 is not a stationary 

point. Then after a finite number 𝑘1 of iterations, the 
exploratory move must be successful otherwise a 
reduction in step length parameter occurs. 
Continuing the process we get a strictly decreasing 

sequence { 𝑥 𝑏
(𝑘𝑚)

} such that  

 

𝑓 (𝑥 𝑏
(𝑘1)

) > 𝑓 (𝑥 𝑏
(𝑘2)

) > 𝑓 (𝑥 𝑏
(𝑘3)

) ….  

 

Since 𝑓(𝑥)is bounded below so due to 

monotonicity 𝑓 (𝑥 𝑏
(𝑘𝑚)

) converges to its lower 

bound. The compactness of feasible region implies 
that there is a feasible point 𝑥∗such that 

 

𝑙𝑖𝑚
𝑚→∞

𝑥 𝑏
(𝑘𝑚)

=  𝑥∗  

 
and 
 

𝑙𝑖𝑚
𝑚→∞

𝑓( 𝑥 𝑏
(𝑘𝑚)

) = 𝑓( 𝑥∗)  

 
Considering the unsuccessful exploratory moves 

with base point  𝑥∗and by the virtue of (2) and (3) 

we arrive at: 
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(𝛻 𝑓(𝑥∗))
𝑇

.  𝑑 𝑖 = 0   𝑓𝑜𝑟  1 ≤ 𝑖 ≤ (𝑛 − 1)  

 

Which shows that (𝛻 𝑓(𝑥∗)) is orthogonal to 

every active direction. Hence there is a non-zero 
constant 𝜅∗such that 
 

(𝛻 𝑓(𝑥∗)) = 𝜅∗𝑢  

⇒  𝛻 𝑓(𝑥∗) = 𝜅∗𝛻 𝑔(𝑥∗)  

 

This proves the existence of constrained 
stationary point of the problem.  

We have shown that in case of all failed 
exploratory moves the algorithm converges to a 
stationary point and successful exploratory moves 
provide descent change which leads to existence of a 
stationary point. 

4.1. Extension to penalized objective function 

The algorithm SAHJ can converge to a constrained 
minimum point of the said problem when the 
assumption 2.2 is not fulfilled but the search 
directions are constructed in a special way. For 
illustration consider 𝑢𝑖 = 0 for some 𝑖 ∈ {1, 2,
3, … , 𝑛} then the hyper-plane (1) is parallel to 𝑖𝑡ℎ 
coordinate axis. In this case step 2 (d) can generate 
only (n – 1) search directions. The 𝑖𝑡ℎ search 
direction is calculated as: 

 
𝑣 𝑖 = 𝐺 + 𝑒(𝑖), 

 

provided 𝑒(𝑖)is the unit vector along 𝑖𝑡ℎ coordinate 

axis. Along with such extensions the above 
convergence results are also valid.  

The unconstrained penalized objective function 
used here is of the form (Bertsekas, 1982; Runarsson 
and Yao, 2000): 

 
ℱ(𝑥) =  𝑓(𝑥) + ℛ 𝜑 (𝑥)   (4) 

 

where, 𝜑 (𝑥)is the penalty function and ℛ  is the 

penalty factor. For every feasible solution 

ℱ(𝑥)coincides with 𝑓(𝑥)and for every infeasible 

solution ℱ(𝑥) > 𝑓(𝑥).  

The convergence for penalized function ℱ(𝑥) can 

also be proved. There is coincidence between 
𝛻ℱ( 𝑥 )and 𝛻𝑓( 𝑥 )for explorations along all the 

active search directions. While using penalized 
function the exploration is made along the members 
of a basis of the search space 𝑅𝑛 which can be 
obtained by including a unit vector 𝑢̂ along 𝑢 in the 

parallel basis of the hyper-plane through origin. The 
resulting linear basis and the counter parts of its 
members form a maximal positive basis for the 

search space. In this way a finite set {𝐵𝑚: 1 ≤ 𝑚 ≤

𝑛} of positive bases is formed and exploited between 

steps 3 to step 5. The proof of existence of a 

stationary point for penalized function ℱ(𝑥) is based 

on its differentiability and use of finite set of 
maximal positive bases. The proof of convergence of 

SAHJ on ℱ(𝑥) coincides with the one convergence 

proof of directional direct search method (Conn et 
al., 2009). 

5. Genetic algorithm based simplex adaptive 
Hooke and Jeeves algorithm (GA-SAHJ) 

Genetic Algorithm (GA) is a well-practiced 
evolutionary global search algorithm. We associate 
GA with SAHJ to design global search method which 
ultimately explores the local search to converge to 
the global solution. The resulting combined 
approach is named as Genetic Algorithm based 
Simplex Adaptive Hook and Jeeves (GA-SAHJ) 
method for further use. The flow chart of the hybrid 
algorithm is given in Fig. 2. 

In the following subsection we present numerical 
results for evaluating the efficiency of the proposed 
algorithm on selected test cases. 

6. Numerical performances 

For comparisons of performances of GA-SAHJ and 
GA-HJ we considered some test problems from the 
literature. For both of the methods the penalized 
objective functions given by (10) were constructed 
by using approach in (Michalewicz and Schoenauer, 
1996) for inequality constraints and a square 
penalty function given in (Deb, 2004) for equality 
constraint.  For numerical implementations of GA-HJ 
and GA-SAHJ methods, step length used were Δi=1, 
the step length reduction parameter α = 0.5 for test 
problems 1-6 and two termination criteria (i) ξ = 
10−20 and (ii) number of function evaluations 
becomes larger than 10000 × (the number of 
variables).  

GA is implemented through optimization toolbox 
in MATLAB (Chipperfield et al., 1994) with 
parameters: Population size = 50, crossover fraction 
= 0.8, mutation rate = 0.01, elite count = 2. 
Remaining parameters used are same as the default 
settings. Six test problems of constrained 
minimization were taken from (Hock and 
Schittkowski, 1981; Himmelblau, 1972). GA is run 
for 20 to 30 generations and the obtained final point 
was retained. 200 iterations of both of SAHJ and HJ 
were recorded with retained point as initial guess. 
The Figs. 3-8 show the convergence of three 
approaches GA-SAHJ, GA-HJ and GA.  

 
Test Problem 6.1: Minimize  

 
𝑓( 𝑥 ) = (𝑥1  +  𝑥2 )2  +  (𝑥2  +  𝑥3 )4  

 
subject to 
 
𝑥1  +  2𝑥2 + 3𝑥3 =  −1  
−10 ≤ 𝑥𝑗 ≤ 10 ;   𝑗 = 1,2,3.  

 
The problem has global minimum at 
 

𝑥∗ =  ( 0.5, −0.5, 0.5)   
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with 
 

𝑓(𝑥∗) = 0. 

 

 
Fig. 2: Genetic algorithm based simplex adaptive Hooke and Jeeves algorithm 

 

Test Problem 6.2: Minimize 
 

𝑓( 𝑥 ) = (𝑥1  +  3𝑥2 + 𝑥3 )2  +  4(𝑥1  +  𝑥2 )2  

 
subject to 

 
𝑥1

3  − 6𝑥2 − 4 𝑥3 ≥ −3   
𝑥1 + 𝑥2 + 𝑥3 = 1  
0 ≤ 𝑥1, x2, 𝑥3 ≤ 10  

 
the constrained minimum of the problem is 
 
 𝑓(𝑥∗) = 1  at 𝑥∗  = (0, 0, 1)  

 
Test Problem 6.3: Minimize 
 
𝑓(𝑥) = 2 − 𝑥1𝑥2𝑥3  

 
subject to 
 
𝑥1 +  2𝑥2 + 2 𝑥3 − 𝑥4 = 0  
0 ≤ 𝑥1, 𝑥2, 𝑥3 ≤ 1, 0 ≤ 𝑥4 ≤ 2 
 

the optimal point is 
 

 𝑥∗ =  (
2

3
,

1

3
,

1

3
, 2) 

 
with 
 

  𝑓( 𝑥∗) =
52

27
. 

 
Test Problem 6.4: Minimize 
 
𝑓(𝑥) = (𝑥1 − 1)2 + (𝑥2 − 𝑥3)2  + (𝑥4 − 𝑥5)2   

subject to 
 
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 = 5  
𝑥3 − 2(𝑥4 + 𝑥5) + 3 = 0  
−5 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ≤ 5  
 

the minimal point of the problem is 
 
 𝑥∗ =  (1, 1, 1, 1, 1)  

 
with 
 
  𝑓( x∗) = 0. 

 
Test Problem 6.5: Minimize 
 

𝑓(𝑥) = (𝑥1− 𝑥2)2 + (𝑥3 − 1)2 + (𝑥4 − 1)4 + (𝑥5 − 1)6  

 

subject to 
 
𝑥1 + 𝑥2 + 𝑥3 + 4 𝑥4 − 7 = 0  
𝑥3 + 5𝑥5 − 6 = 0  
10−6 ≤ 𝑥1, 𝑥2, 𝑥3 ≤ 10  

 
the optimal solution is 
 
𝑥∗= (1, 1, 1, 1, 1) 
 

having minimum value  
 

𝑓(𝑥∗) = 0. 

 
Test Problem 6.6: Minimize 
 

𝑓(𝑥) = −32.174 {255 𝑙𝑜𝑔 (
𝑥1+𝑥2+𝑥3+0.03

0.9𝑥1+𝑥2+𝑥3+0.03
) +  
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280 𝑙𝑜𝑔 (
𝑥2+𝑥3+0.03

0.07𝑥2+𝑥3+0.03
) + 290 𝑙𝑜𝑔 (

𝑥3+0.03

0.13𝑥3+0.03
)}  

 

subject to 
 
𝑥1 + 𝑥2 + 𝑥3 − 1 = 0  
0 ≤ x1 , 𝑥2, 𝑥3 ≤ 1  
 

The best solution of the problem is 
𝑥∗ = (0.6178126908, 0.328202223, 0.05398508606)  

 

with 
 
  𝑓( 𝑥∗) = −26272.51448. 

 
Table 1 is based on 50 independent runs of GA-

SAHJ and GA-HJ. Since GA solutions fall far away up 
to 2500 generations so those solutions are not 
included. 

Table 1: Statistics for 50 independent runs for above test cases 

Test Problem 
Best Mean Worst 

GA-SAHJ GA-HJ GA-SAHJ GA-HJ GA-SAHJ GA-HJ 
6.1 2.237 × 10−39 3.074 × 10−8 1.388 × 10−11 0.0086663 1.39 × 10−10 0.018513 
6.2 1.0000 1.0000 1.0000 1.616 1.0000 3.9348 
6.3 1.9261 1.932 1.9345 1.9474 2.000 2.000 
6.4 9.728 × 10−6 0.0070858 0.00086657 1.9374 0.0018652 5.8951 
6.5 5.412 × 10−14 8.156 × 10−7 6.77 × 10−5 8.155 × 10−5 0.0010517 0.00045528 
6.6 −26272.5145 −26272.5007 −26272.5145 −26250.0561 −26272.5145 −26176.4998 

 

It can be observed from Figs. 3-8 that in all cases 
GA-SAHJ has found the minimum points much faster 
than GA-HJ. Moreover the GA-HJ method stagnates at 
some feasible point while its following iterations fail 
in producing further improvements in the objective 
function values, especially in test problems 6.3, 6.5, 
and 6.6. 

 

 
Fig. 3: Convergence of GA-SAHJ, GA-HJ and GA on test 

problem 6.1 
 

 
Fig. 4: Convergence of GA-SAHJ, GA-HJ and GA on test 

problem 6.2 

7. Conclusion 

This paper presented a convergent hybrid 
optimization method namely Genetic Algorithm 
based Simplex Adaptive Hooke and Jeeves Algorithm 
(GA-SAHJ) to efficiently solve the equality 
constrained optimization problems. The proposed 
algorithm guarantees to return a stationary point of 
the equality constrained problems. The effectiveness 

of the GA-SAHJ has been demonstrated through six 
benchmark problems taken from the literature.  

 

 
Fig. 5: Convergence of GA-SAHJ, GA-HJ and GA on test 

problem 6.3 
 

 
Fig. 6: Convergence of GA-SAHJ, GA-HJ and GA on test 

problem 6.4 
 
 

 
Fig. 7: Convergence of GA-SAHJ, GA-HJ and GA on test 

problem 6.5 
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Fig. 8: Convergence of GA-SAHJ, GA-HJ and GA on test 
problem 6.6 

The convergence curves in Figs. 3-8 show the 
superior convergence speed of GA-SAHJ over GA and 
GA-HJ. Moreover, the statistical results in Table 1 
witness that best and mean fitness values produced 
by GA-SAHJ are highly better than those of GA-HJ 
under the similar implementation conditions. These 
results emphasize the capabilities of the GA-SAHJ for 
such problems and encourage its further 
implementation to other fields as well as engineering 
problems. As a future direction, it is intended to 
hybridize the proposed SAHJ with modern 
metaheuristics for solving economic dispatch 
problem with valve point loading effect resembling 
with the considered test instances. Additionally, 
suitable linearization schemes can be used to solve 
nonlinear equality constrained problems with the 
proposed scheme. 
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