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This study suggests a new method for online enhancement of multimachine 
system stability. Two steps centered on adjusting power system stabilizers 
(PSSs) are examined. Firstly, the PSS parameters are tuned off-line using an 
elitist optimization technique based on genetic algorithms symbolized by 
NSGAII over a large set of operating conditions. NSGAII was employed to 
move all electromechanical modes in a pre-specified area in the s-plan. Then, 
a flexible fuzzy logic-based neural network is proposed to adjust the 
parameters of the PSSs at any operating condition that can be outside the off-
line set by exploiting the off-line results. The suggested controllers are tested 
by using multi-machine system over some scenarios of serious faults and 
system configurations. Simulations results show the efficiency and sturdiness 
of the suggested stabilizers in enhancing the overall system dynamics in real-
time at any loading condition selected arbitrarily. 
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1. Introduction

*In the past few years, power system problems
associated with low frequency oscillations (LFO) 
have been widely revealed and examined. For 
economic and effectiveness reasons, power system 
stabilizers (PSSs) have been mostly applied along 
with excitation generator systems to improve both  
damping of LFO and stability of the power network 
during severe interferences. They are employed to 
develop damping torque for the rotor oscillations 
across the excitation systems. In most research 
works, the traditional PSS (CPSS) was commonly 
provided as a lead-lag filter (Li et al., 2009; Abido, 
2000; Sebaa and Boudour, 2009). An extensive 
research to study the impact of the CPSS parameters 
on the temporary and powerful activities of power 
system is provided in (Kundur et al., 1989). 

A quite a bit of research references have been 
released on the area of developing and applying of 
CPSSs controllers as sufficient damping resources 
(Ostojic, 1991; Sambariya et al., 2016). The design 
methods of PSSs such as phase compensation and 
root locus (Ostojic, 1991), eigenvalue sensitivity 
analysis (Tse et al., 2001) and poles placement 
(Abido, 2000) are very suggestive. In (Ataei et al., 
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2012; Werner et al., 2003), the PSS adjustment issue 
is transformed into LMI problem; its solving 
determines the stabilizer parameters (Ataei et al., 
2012). A new LMI based strategy with rank 
condition has been described in (Kim et al., 2010) to 
the design of effective PSS. Yet, a one machine test 
system is investigated in simulation section. 

Unfortunately, some of the aforementioned 
techniques are sequential methods that only 
consider the damping improvement of one crucial 
electromechanical mode at a time. Moreover, they 
are repetitive techniques and require an 
initialization step. In addition, they can cause the 
convergence of the search process into local optima. 
The restrictions of traditional optimization methods 
were prevented by suggesting some soft computing 
algorithms. In Hassana et al. (2014), Sebaa and 
Boudour (2009), genetic algorithms were applied for 
effective PSS tuning. Two functions in accordance 
with the eigenvalue analysis have been developed 
for shifting all closed-loop electromechanical modes 
in a pre-specified zone in the s-plan. The multi-
objective problem (MOP) is transformed into a 
mono-objective problem by assessing the goals with 
distinct weights. Accordingly, there is a loss of 
diversification in the Pareto solutions. In Sambariya 
et al. (2016), the authors provided a bat-based fuzzy 
algorithm for an effective PSS design where time-
domain objective functions were employed. Other 
transformative calculations criteria and evolutionary 
computation algorithm, called bacteria foraging 
algorithm (BFA) along with maximum neuro-fuzzy 
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plan were developed in Beno et al. (2011) and 
Mishra et al. (2007) to design intelligent adaptive 
flexible PSSs for the improvement of both the 
transient and dynamic stability of multi-machine 
systems. Nonetheless, The BFA depends on unique 
search guidelines which may lead to delay in 
attaining the global solution. 

The above design procedures have been done 
either at single operating point or at several loading 
conditions at once. Unfortunately, the controllers 
cannot ensure the system stability with good 
performance, when loads and/or configuration of 
the system are changed. Thus, to solve such problem 
we have to update the controllers’ parameters at 
each loading conditions, which does not guarantee 
the online decision. Recently, artificial intelligence 
based PSSs have been well-advised for online 
enhancement of stability (Fraile-Ardanuy and 
Zufiria, 2007; Lakshmi and Khan, 1998; Mitra et al., 
2007; Abd-Elazim and Ali, 2013). A new neural 
network based technique for online CPSS setting has 
been provided in Segal et al. (2000). The stabilizer 
performance is investigated by varying terminal 
voltage, power generation and equivalent impedance 
of one generator system. In Fraile-Ardanuy and 
Zufiria (2007), genetic algorithms (GA) are 
combined with adaptive network based fuzzy 
inference systems (ANFIS) for online CPSS tuning. 
Unluckily, the above online designs are tested only 
by using a single generator system that cannot 
ensure the stability of a multimachine system. A 
fuzzy logic based procedure for online PSS design 
(FLPSS) was provided and analyzed in Lakshmi and 
Khan (1998) where speed deviations and their 
derivatives of machines were chosen as input 
signals. In Mitra et al. (2007), the FLPSS was used 
with new input signals, namely, deviation of the real 
power flow in some lines in combination with the 
speed deviation. This technique gives better results 
compared to the FLPSS with angular speed and 
acceleration input signals.  

To use even the benefits of evolutionary 
algorithms, fuzzy logic systems and neural networks, 
a technique for real-time adjustment of the PSSs 
parameters using the improved version of non-
dominated sorting GA (NSGAII) (Deb et al., 2002; 
Guesmi et al., 2006) and ANFIS is suggested in this 
paper. The proposed online design will be done in 
two steps. The first stage aims to find the optimum 
PSS parameters using NSGAII for a lot of different 
operating conditions. Two objective functions will be 
minimized so as to shift as could as possible all 
undamped and lightly damped electromechanical 
modes in a pre-specified zone called D-shape area. In 
this research, the system will be linearized about 
each steady state condition.  

Nevertheless, the next step relies on the ANFIS 
training phase according to the data base supplied 
by the previous step. Input and output data are 
respectively, operating conditions and optimum 
controller parameters. Optimum solution will be 
extracted from the Pareto front using the fuzzy 
based technique presented in Abido (2006). The 

suggested design approach ANFIS-PSS has been 
applied on a multi-machine power system under 
different scenarios of severe fault disturbances and 
loading. Eigenvalue analysis along with simulation 
results based on nonlinear simulation confirm that 
the suggested ANFIS-PSSs work effectively for any 
random operating condition and boosts on real-time 
the entire system performance. 

The main contributions of this work are 
summarized as follows: 

 
 A new NSGAII and ANFIS based PSS design for 

online enhancement of multimachine system 
stability was proposed. The aforementioned 
objective functions were minimized 
simultaneously and independently.  

 Unlike previous works (Kashki et al., 2013; 
Khodabakhshian and Hemmati, 2013), the purpose 
of this study is not only to place all 
electromechanical modes in the D-shape area but 
also it aims to move them as much as possible to 
the left side. 
 

The rest of this paper lies in six sections. In 
section two, a mathematical modeling of a 
multimachine system including PSSs is described. 
Section three investigates the mathematical 
formulation of the design of PSS controllers. NSGAII 
algorithm and the ANFIS principles are described 
respectively in sections four and five. Section six is 
consecrated to the establishment of the suggested 
controllers. A conclusion of this work is drawn in 
section seven.   

2. System modeling 

2.1. Power system model 

For stability studies, power system is often 
modeled by nonlinear differential and algebraic 
equations (DAE) as follows (Fereidouni et al., 2013) 
(Eqs. 1-3). 
 

𝑋̇ = 𝑓(𝑋, 𝑌,𝑈)                                                                               (1) 

0 = 𝑔(𝑋, 𝑌)                                                                                     (2) 

𝑊 = ℎ(𝑋, 𝑌, 𝑈)                                                                              (3) 
 

Where, X is the state vector defined by 𝑋 =

[𝛿 𝜔 𝐸𝑞
′  𝐸𝑓𝑑]

𝑇
, Y is the vector of algebraic variables 

composed of phase angles and magnitudes of 
voltages at all buses of the studied system and W is 
the vector of output variables. 

The PSS output signals constitute the input vector 
defined by U. f is a vector function comprising the 
first order nonlinear differential equations that 
represent system and controller dynamics and g 
describes the power flow equations in the network. h 
is a vector function containing all equations that 
represent output variables.  

A linear incremental model is incorporated in the 
PSS design method. By exploiting a methodology 
provided in Abd-Elazim and Ali (2013), power 
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system with n machines and m PSSs is linearized at a 
steady state point as given below (Eq. 4). 

 

[
∆𝑋̇
0
∆𝑊

] = [

𝑓𝑥 𝑓𝑦 𝑓𝑢
𝑔𝑥 𝑔𝑦 𝑔𝑢
ℎ𝑥 ℎ𝑦 ℎ𝑢

]                                                               (4) 

 
where 

 
𝑓𝑥 = ∇𝑥

𝑇𝑓, 𝑓𝑦 = ∇𝑦
𝑇𝑓, 𝑓𝑢 = ∇𝑢

𝑇𝑓, 𝑔𝑥 = ∇𝑥
𝑇𝑔 𝑔𝑦 = ∇𝑦

𝑇𝑔, 𝑔𝑢 =

∇𝑢
𝑇𝑔, ℎ𝑥 = ∇𝑥

𝑇ℎ, ℎ𝑦 = ∇𝑦
𝑇ℎ and ℎ𝑢 = ∇𝑢

𝑇ℎ  

 
Removing ∆𝑌 and assuming that power flow 

Jacobian 𝑔𝑦 is non-singular, the system can be 

readily modelled by the following state equation (Eq. 
5). 

 
𝑋̇ = 𝐴𝑋 + 𝐵𝑈                                                                                 (5) 
 

where, A is 4𝑛 × 4𝑛 matrix and B matrix is 4n m  
matrix that are described as follows: 
 
𝐴 = 𝑓𝑥 − 𝑓𝑦𝑔𝑦

−1𝑔𝑥  and 𝐵 = 𝑓𝑢 − 𝑓𝑦𝑔𝑦
−1𝑔𝑢  

 

the output variables are written as follows (Eq. 6). 
 
∆𝑊 = 𝐶∆𝑋 + 𝐷∆𝑈                                                                       (6) 
 
where 𝐶 = ℎ𝑥 − ℎ𝑦𝑔𝑦

−1𝑔𝑥  and𝐷 = ℎ𝑢 − ℎ𝑦𝑔𝑦
−1𝑔𝑢. 

2.2. PSS with excitation system 

The PSS provides control effect through the 
exciter to the system under research. A lead-lag PSS 
portrayed in Fig. 1 is examined in this document 
(Abido, 2000). 

The input signal of the i-th PSS is the normalized 
speed deviation, ∆𝜔𝑖 . While the output is the 
supplementary stabilizing signal, Ui. As shown in the 
block diagram of Fig. 1, the PSS can be modelled by 
the transfer function given in Eq. 7. 

 

𝑈𝑖(𝑠) = 𝐾𝑖
𝑠𝑇𝑊𝑖

𝑠𝑇𝑊𝑖
[
(1+𝑠𝑇1𝑖)(1+𝑠𝑇3𝑖)

(1+𝑠𝑇2𝑖)(1+𝑠𝑇4𝑖)
]                                                 (7) 

 

 
Fig. 1: Power network with ANFIS-PSS controllers 

 

In the past equation, the washout block is used as 
a high-pass filter eventually continuous with time 
constant 𝑇𝑊𝑖  sufficient to allow the signals in range 
0.2-2 Hz associated with rotor oscillation to 
successfully pass without modification. In general, it 
is in the variety of 1-20s (Kundur et al., 1989). The 
two first order lead-lag filters are applied to 
compensate the phase lag between the output of the 
PSS and the control action that is the electric torque. 

3. Design strategy 

The closed-loop modes are analyzed after 
linearizing the system around the operating point. 
Then, objective functions will be formulated using 
only the lightly damped or unstable 
electromechanical modes that need to be shifted. In 
this document, the issue of PSS parameters tuning 
that consolidates the stability of the system is 
transformed into a bi-objective minimization issue. 
The first objective function indicated by J1 in Eq. 8 
aims to move all electromechanical mode into the 
left-side of the vertical line described by 𝜎𝑖𝑗 = 𝜎0, Fig. 

2a. However, the second one is described by J2. It is 
obvious that minimize J2 matches to maximize the 
minimum of damping ratios of all electromechanical 
modes and place all electromechanical modes in a 
wedge-shape sector defined by 

𝑖𝑗
≥ 

0
, Fig. 2b. As 

consequence, the maximum overshoot is limited. 
Compared with over previous works (Kashki et al., 
2013; Khodabakhshian and Hemmati, 2013), the 
purpose of this formulation is not only to shift the 
electromechanical modes into the D-shape zone (Fig. 
2c) but also it aims to move them as much as 
possible to the left side.  
 

{
  
 

  
 
𝑖𝑓 𝜎𝑖𝑗 ≤ 𝜎0 𝑎𝑛𝑑  𝑖𝑗 ≥ 0,        

𝐽1 = 𝑚𝑎𝑥(𝜎𝑖𝑗)

𝐽2 = −𝑚𝑖𝑛(𝜎𝑖𝑗)

𝑒𝑙𝑠𝑒,
𝐽1 = 𝐽1𝑚𝑎𝑥
𝐽2 = 𝐽2𝑚𝑎𝑥

                                                 (8) 

 

 
Fig. 2: Location of electromechanical modes 

 
Objective functions J1 and J2 will be minimized 

with respect to the bounds of the PSSs parameters 
given by inequalities 9-13. 
  

𝐾𝑖
𝑚𝑖𝑛 ≤ 𝐾𝑖 ≤ 𝐾𝑖

𝑚𝑎𝑥                                                                       (9) 

𝑇1𝑖
𝑚𝑖𝑛 ≤ 𝑇1𝑖 ≤ 𝑇1𝑖

𝑚𝑎𝑥                                                                    (10) 

𝑇2𝑖
𝑚𝑖𝑛 ≤ 𝑇2𝑖 ≤ 𝑇2𝑖

𝑚𝑎𝑥                                                                    (11) 

𝑇3𝑖
𝑚𝑖𝑛 ≤ 𝑇3𝑖 ≤ 𝑇3𝑖

𝑚𝑎𝑥                                                                    (12) 

𝑇4𝑖
𝑚𝑖𝑛 ≤ 𝑇4𝑖 ≤ 𝑇4𝑖

𝑚𝑎𝑥                                                                    (13) 
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Other constraints can be included in system 
constraints, which are the electromechanical mode 
frequency limits (Eq. 14). 

 
𝜔𝑚𝑖𝑛 ≤ 𝜔 ≤ 𝜔𝑚𝑎𝑥                                                                       (14) 
 

The time constant TWi  of the washout will be 
fixed to 5s. Typical ranges of the decision variables 
are [1-20] for 𝐾𝑖  and [0.01-1.5] for 𝑇4𝑖 . 𝜔𝑚𝑎𝑥  and 
𝜔𝑚𝑖𝑛  are 2 and 0.2 Hz, respectively. 

4. Presentation of NSGAII approach  

As mentioned, NSGAII is employed in the 
optimization step. Starting by a population Pt with Np 
individuals, NSGAII generates new population Qt 
called offspring population. These two populations 
will be combined in one population Rt. Then, Rt is 

classified into different non-domination levels 𝑅𝑡
𝑗
. 

Thus, 𝑅𝑡
1 is the Pareto front. Generally speaking, all 

solutions of 𝑅𝑡
𝑗
 dominate all solutions of 𝑅𝑡

𝑗+1
. On the 

other hand, all solutions having the same non-
domination level will be sorted in accordance with 
their crowding distances. Finally, solutions of 𝑅𝑡

1 are 
priority to be inserted into the next population Pt+1 

followed by solutions from 𝑅𝑡
2 and so on until Pt+1 is 

filled. If the size of Pt+1 is greater than Np, excess 
elements that are from the last front will be removed 
according to their crowding distances in ascending 
order. The basic flowchart of NSGAII is shown in Fig. 
3. 

 

 
Fig. 3: Basic flowchart of NSGAII 

5. ANFIS technique 

ANFIS firstly proposed by Jang (1993) was used 
for online adjustment of PSSs parameters. The choice 
of the number of membership functions (MF) is a 
tricky step that influences the convergence of ANFIS 
method. Several works have been proposed to 
choose this parameter such as trial and error method 
and clustering based techniques (Fraile-Ardanuy and 
Zufiria, 2007). In this study, density measure based 
clustering approach is used in training phase. For a 
set 𝑋 = {𝑋1, 𝑋2, ⋯ , 𝑋𝑛}with n data points, the density 
measure based clustering technique is summarized 
in Fig. 4. Where, ra and rb are positive constants that 
are set to 0.5 and 0.8 respectively. 

  

 
Fig. 4: Proposed clustering technique 
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Fig. 5 illustrates an example of cluster points and 
cluster centers for two input variables that can be 
loading factors relative to active and reactive powers 
P and Q. It is clear that the number of clusters is 8 for 
1000 data points chosen randomly between 0.2 and 
1.6. 

 

 
Fig. 5: Data points and cluster centers 

6. Implementation of the proposed controllers 

To illustrate the sturdiness and efficiency of the 
recommended ANFIS-based controllers (ANFIS-PSS), 
the 3-machine 9-bus WSCC (western system 
coordinating council) portrayed in Fig. 6 is regarded. 
All data of the studied system are presented in detail 
in Pai (1989). The system operating condition for the 
base case is depicted in Table 1. For this system, the 
assumption is that all machines except G1 are 
equipped with PSS. The pre-specified D-shape zone 
is defined by 𝜎0 = −2  and 

0
= 20%. 

 

 
Fig. 6: WSCC system 

 

Table 1: Operating condition for the base case 
  P [pu] Q [pu] 

Gen 
G1 0.72 0.27 
G2 1.63 0.07 
G3 0.85 -0.11 

Load 
A 1.25 0.50 
B 0.90 0.30 
C 1.00 0.35 

6.1. Off-line data collection 

In this stage, NSGAII algorithm was executed for 
preparing the input-output set. A large range of 

operating points described in Eqs. 23 and 24 are 
used. Where, 𝑃𝐿0𝑖  and 𝑄𝐿0𝑖  correspond to the 
nominal case load of bus number i. Variables 𝑝 and 

𝑞 are loading factors that will be varied individually, 

from 0.2 to 1.5. In this manner, the load power 
variation ranges will be covered (Eqs. 15 and 16). 

  
𝑃𝐿𝑖 = 𝑝𝑃𝐿0𝑖                                                                                  (15) 

𝑄𝐿𝑖 = 
𝑞
𝑄𝐿0𝑖                                                                                 (16) 

 
The set of training data is chosen to be with 1936 

input-output pairs constituted by loading factors as 
input data and PSS parameters as output data.  

To justify the use of NSGAII, a comparison with 
existing evolutionary algorithms such as NSGA is 
evident. For fair evaluation, NSGAII and NSGA 
programs have been written with the same number 
of generations (100), probability of crossover (0.9) 
and same probability of mutation (0.1). 

The execution of the two methods is 
accomplished by generating the Pareto fronts 
depicted in Fig. 7, the variation of the fitness 
functions versus generation number (Fig. 8) and the 
optimized PSSs parameters illustrated by Table 2. 
Obtained results for the base case show that NSGAII 
has better diversity characteristics with minimum 
values of fitness functions 𝐽1 and  𝐽2. 

 

 
Fig. 7: Pareto solutions for the base case 

 
Table 2: Optimal setting parameters 

Method Gen. K T1 T2 T3 T4 

NSGA 
G2 3.2940 0.0629 0.4234 1.4972 0.1046 
G3 6.2904 0.2348 0.2235 0.2912 0.0210 

NSGAII 
G2 6.0874 0.9426 0.3129 0.2530 0.1352 
G3 2.4439 1.4712 0.4607 0.1886 0.2000 

 

Electromechanical modes along with damping 
ratios at the base case without and with PSSs 
controllers are summarized in Table 3. It is evident 
also, that the stabilizer NSGAII-PSSs outperforms the 
NSGA-PSSs and they provide the best damping. 
Moreover, there isn't any doubt that these modes are 
badly damped, when PSSs are not installed. 

6.2. Training phase 

The second stage of the online PSS design 
procedure aims to establish a relationship between 
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input and output data by employing ANFIS. To 
accelerate the convergence of the learning stage, an 
ANFIS is applied for each controller parameter. 
Using the data base provided in the previous stage, 
the initial MFs with a cluster radius 𝑟𝑎 = 0.5 are 
displayed in Fig. 9. On the other hand, the 
performance of the ANFIS is tested by visualizing 
two parameters from its output set that are K1 and K2 
for 44 samples from the checking set, Fig. 10. 

 
Table 3: Electromechanical modes for base case 

Method Base case 

Without PSS 
-0.1124 ± j7.7400, 0.0145 
-1.3346 ± j9.1096, 0.1450 

NSGA-PSS 
(best compromise solution) 

-2.5748 ± 5.6254i, 0.4162 
-2.8809 ± 7.0134i, 0.3800 

NSGAII-PSS 
(best compromise solution) 

-2.7769 ± 4.1314i, 0.5578 
-2.8950 ± 6.1549i, 0.4256 

 

 

 
Fig. 8: Convergence of objective functions for the base case 

 

 
Fig. 9: Initial MF for PSSs parameters 

 

 

 
Fig. 10: Prediction data versus checking data 

 
Fig. 11 indicates that all electromechanical modes 

for two operating conditions chosen arbitrary that 
are given in Table 4 have been properly shifted to 
the specified D-shape zone, when the suggested 
ANFIS-PSS controllers are installed. 

In addition, it is obvious that these modes can be 
considered close to those achieved when applying 
the NSGAII based design. The first case correspond 
to 𝑝 = 0.4 and 𝑞 = 0.7. However, the second one is 

defined by 𝑝 = 0.2 and 𝑞 = 1.1.  

6.3. Nonlinear time-domain simulation 

The main purpose of this section is to confirm the 
efficiency of the ANFIS-PSS controllers in improving 
the system damping characteristics by nonlinear 
time-domain simulation. Therefore, two scenarios of 
severe fault disturbances are simulated for the two 
loading conditions mentioned above. 

  
i) Scenario 1, 6-cycle fault disturbance at bus 5 at 

the end of line 5–7. The fault is cleared by tripping 
the line 5–7 with successful reclosure after 1.0s ; 

ii) Scenario 2, is equivalent to the previous scenario 
with a step increase of 0.2 p.u. in mechanical 
power. The fault is removed by tripping the line 
5–7 with successful reclosure after 1.0s. 
 
Fig. 12 depicts some results obtained using 

nonlinear simulation at the previous arbitrary 
loading conditions. Since all system variables have 
the same dynamic performances, simply the speed 
deviations of generators are considered. It is obvious 
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that NSGAII-PSS controllers are able to give excellent damping features at any operating condition. 
 

Table 4: Operating conditions for cases 1 and 2 

 
 
 

Gen 

 
 

Case 1 
𝑝 = 0.4, 

𝑞 = 0.7 

Case 2 
𝑝 = 0.4, 

𝑝 = 1.1 

P Q P Q 
G1 0.2864 0.1890 0.1432 0.2970 
G2 0.6520 0.4690 0.3260 0.7370 

G3 0.3400 
-

0.7630 
0.1700 -0.1199 

Load 
A 0.5000 0.3500 0.2500 0.5500 
B 0.3600 0.2100 0.1800 0.3300 
C 0.4000 0.2450 0.2000 0.3850 

 

 
Fig. 11: D-shape sector for cases 1 and 2 

 

 
(a) 

 
(b) 

Fig. 12: Speed deviations in pu of G2 and G3 a) Scenario 1 
for Case 1 b) Scenario 2 for Case 2 

 

Therefore, both controllers NSGAII-PSSs and 
ANFIS-PSSs lead to the same results. Nevertheless, 
Table 5 proves clearly that the recommended ANFIS-
based controllers are suitable for on-line stability 
enhancement due to its reduced CPU time. Results 
have been obtained using MATLAB R2009a installed 
on a PC with i7-4510U CPU @ 2.60 GHz, 64 bit. 

 
Table 5: CPU time in seconds 

NSGA-II algorithm ANFIS-based approach 
227.4479 0.0143 

 

Effectiveness of ANFIS-PSSs controllers is, also, 
verified and confirmed by two dynamic performance 
indices based on the generator speed deviation. The 
minimum values of these indices called ITAE and FD 
match an excellent damping. ITAE and FD are 
defined as follows (Eqs. 17 and 18). 
 

𝐼𝑇𝐴𝐸 =
∑ 1000 ∫ 𝑡( ∆𝜔𝑖 )𝑑𝑡

𝑡𝑠𝑖𝑚
0

𝑛
𝑖=𝑁𝑔

𝑁𝑔
                                               (17) 

𝐹𝐷 =
∑ (500×𝑂𝑆𝑖)

2+(500×𝑈𝑆𝑖)+𝑇𝑠𝑖
2𝑁𝑔

𝑖=1

𝑁𝑔
                                             (18) 

 

where, TSi, USi and OSi are respectively, settling time, 
undershoot and overshoot of the i-th generator 
speed deviation ∆𝜔𝑖 . 

Form Figs. 13 and 14, it is clear that ANFIS-PSSs 
controllers have the best performance compared to 
NSGA-PSSs and the simulated annealing based 
power system stabilizer (SAPSS) proposed in (Abido, 
2000). 

7. Conclusion 

This study attempts at suggesting a 
comprehensive scheme for online enhancement of 
power system stability. Firstly, an elitist technique 
based on GA symbolized by NSGAII is used to gather 
the training set. Real power and reactive power 
demands that can be directly measurable was 
considered as input data. However, optimum 
parameters of PSSs represent the output data. Then, 
the acquired data base is employed in the ANFIS 
training stage to provide the optimal stabilizer 
parameters at any loading condition. 

The effectiveness of the suggested controllers has 
been tested on a well-known benchmark power 
system called "western system coordinating 
council". 
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Fig. 13: Performance indices for Scenario 1 

 

 

 
Fig. 14: Performance indices for Scenario 2 

 

Simulation results approve the following 
outcomes: 
 The proposed ANFIS-PSS controllers work 

effectively at any arbitrary operating condition 
and enhance the performance of the overall 
system on real-time. 

 Since inputs are measurable variables, the 
suggested stabilizers can be implemented easily in 
practice.   
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List of symbols  

𝐸𝑞
′             Internal voltage  

𝐸𝑓𝑑           Field voltage  

𝑉𝑟𝑒𝑓𝑖         Reference voltage of machine Gi  

Vti             Terminal voltage of machine Gi 
KA             Amplifier gain of the excitation system  
TA             Amplifier time constant of the excitation system 
TWi           Washout time constant 
gmax          Maximum number of generation 
J1 and J2   Fitness functions 
J1max          Upper limit of J1  
J2max          Upper limit of  J2 
                Rotor angle of the machine   
               Speed deviation of the machine   
ij      Real part of the i-th electromechanical modes 
corresponding to the j-th operating point 
ij           Damping ratio of the i-th  electromechanical modes 
corresponding to the j-th operating point 
0 and 0 Threshold parameters of the pre-specified D-
shape sector 
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